Stomata play a fundamental role in modulating the exchange of gases between plants and the atmosphere. These microscopic structures form in high numbers on the leaf epidermis and are also present on flowers. Although leaf stomata are well studied, little attention has been paid to the development or function of floral stomata. Here, we characterize in detail the spatial distribution and development of the floral stomata of the indica rice variety IR64. We show that stomatal complexes are present at low density on specific areas of the lemma, palea and anthers and are morphologically different compared to stomata found on leaves. We reveal that in the bract-like organs, stomatal development follows the same cell lineage transitions as in rice leaves and demonstrate that the overexpression of the stomatal development regulators OsEPFL9-1 and OsEPF1 leads to dramatic changes in stomatal density in rice floral organs, producing lemma with approximately twice as many stomata (OsEPFL9-1_oe) or lemma where stomata are practically absent (OsEPF1_oe). Transcriptomic analysis of developing florets also indicates that the cellular transitions during the development of floral stomata are regulated by the same genetic network used in rice leaves. Finally, although we were unable to detect an impact on plant reproduction linked to changes in the density of floral stomata, we report alterations in global gene expression in lines overexpressing OsEPF1 and discuss how our results reflect on the possible role(s) of floral stomata.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcac120DOI Listing

Publication Analysis

Top Keywords

floral stomata
20
stomatal development
12
stomata
10
gene expression
8
development floral
8
rice leaves
8
lemma stomata
8
floral
6
stomatal
5
rice
5

Similar Publications

The stomata of fossil plants are commonly used as proxies to reconstruct palaeo-atmospheric carbon dioxide concentrations (palaeo-[CO]). Stomatal reconstruction of palaeo-[CO] during global greenhouse periods or episodes of global warming, are particularly important to our understanding of the role of CO as a climate system driver. However, the efficacy of the 'stomatal method' for palaeo-[CO] reconstruction depends upon the strength of the inverse relationship between stomatal number and the [CO] in which the leaf developed.

View Article and Find Full Text PDF

As the site of almost all terrestrial carbon fixation, the mesophyll tissue is critical to leaf function. However, mesophyll tissue is not restricted only to leaves but also occurs in the laminar, heterotrophic organs of the floral perianth, providing a powerful test of how metabolic differences are linked to differences in tissue structure. Here, we compared mesophyll tissues of leaves and flower perianths of six species using high-resolution X-ray computed microtomography (microCT) imaging.

View Article and Find Full Text PDF

Floral ontogeny reveals potential synapomorphies for Senegalia sect. Monacanthea p.p. (Leguminosae).

J Plant Res

September 2024

DIPEQ, Instituto de Pesquisas Jardim Botânico Do Rio de Janeiro, Rua Pacheco Leão 915, Rio de Janeiro, RJ, 22460‑030, Brazil.

Senegalia was recently described as non-monophyletic; however, its sections exhibit robust monophyletic support, suggesting a potential reclassification into separate genera-Senegalia sect. Monocanthea p.p.

View Article and Find Full Text PDF

Anatomical, histochemical, and developmental approaches reveal the long-term functioning of the floral nectary in Tocoyena formosa (Rubiaceae).

Naturwissenschaften

April 2024

Laboratório de Ecologia da Polinização e Interações (LEPI), Departamento de Biodiversidade e Bioestatística, Instituto de Biociências de Botucatu, Universidade Estadual Paulista "Júlio de Mesquita Filho" (Unesp), Botucatu, SP, Brazil.

Tocoyena formosa has a persistent floral nectary that continues producing nectar throughout flower and fruit development. This plant also presents an intriguing non-anthetic nectary derived from early-developing floral buds with premature abscised corolla. In this study, we characterize the structure, morphological changes, and functioning of T.

View Article and Find Full Text PDF

Monocots and eudicots have more conservative flower water use strategies than basal angiosperms.

Plant Biol (Stuttg)

June 2024

CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.

Water balance is crucial for the growth and flowering of plants. However, the mechanisms by which flowers maintain water balance are poorly understood across different angiosperm branches. Here, we investigated 29 floral hydraulic and economic traits in 24 species from ANA grade, magnoliids, monocots, and eudicots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!