In lithium thiocyanate Li(SCN), the temperature regime below the melting point (274 °C) is characterized by excess conductivities over the usual Arrhenius behavior (premelting regime). Here, the Schottky defect pair concentration is high, and the point defect chemistry can no longer be considered as dilute. Coulomb interactions of Schottky pairs are expected to occur lowering the formation energy of new carriers and hence leading avalanche-like to a transition into a fully defective superionic state. The respective non-linear behavior is investigated using the cube-root law approach characterized by a defect interaction parameter , which is a measure of the effective defect-lattice energy. In the case of Li(SCN), the rather pronounced volume expansion is to be included in the model. A literature comparison with other materials emphasizes to what degree defect formation as well as defect interactions depend not only on the dominant mobile defect, but also on the respective sublattice. Overall, a quantitative description of the defect chemistry of Li(SCN) in the premelting regime is derived.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp01841aDOI Listing

Publication Analysis

Top Keywords

premelting regime
12
lithium thiocyanate
8
thiocyanate liscn
8
defect chemistry
8
defect
7
ion transport
4
transport mechanism
4
mechanism anhydrous
4
anhydrous lithium
4
liscn
4

Similar Publications

Confinement enhanced viscosity vs shear thinning in lubricated ice friction.

J Chem Phys

February 2024

Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.

The ice surface is known for presenting a very small kinetic friction coefficient, but the origin of this property remains highly controversial to date. In this work, we revisit recent computer simulations of ice sliding on atomically smooth substrates, using newly calculated bulk viscosities for the TIP4P/ice water model. The results show that spontaneously formed premelting films in static conditions exhibit an effective viscosity that is about twice the bulk viscosity.

View Article and Find Full Text PDF

In lithium thiocyanate Li(SCN), the temperature regime below the melting point (274 °C) is characterized by excess conductivities over the usual Arrhenius behavior (premelting regime). Here, the Schottky defect pair concentration is high, and the point defect chemistry can no longer be considered as dilute. Coulomb interactions of Schottky pairs are expected to occur lowering the formation energy of new carriers and hence leading avalanche-like to a transition into a fully defective superionic state.

View Article and Find Full Text PDF

This work reports on the ion transport properties and defect chemistry in anhydrous lithium thiocyanate Li(SCN), which is a -halide Li cation conductor. An extensive doping study was conducted, employing magnesium, zinc and cobalt thiocyanate as donor dopants to systematically vary the conductivity and derive a defect model. The investigations are based on impedance measurements and supported by other analytical techniques such as X-ray powder diffraction (XRPD), infrared (IR) spectroscopy, and density functional theory (DFT) calculations.

View Article and Find Full Text PDF

Interior Melting of Rapidly Heated Gold Nanoparticles.

J Phys Chem Lett

September 2021

Department of Physics and Astronomy and Department of Chemistry, University of Missouri, Columbia, Missouri 65211-7010, United States.

Normal melting invariably starts from surfaces or interfaces due to the weaker bonding constraints in these regions. However, we show that melting can be initiated from the interior of gold nanoparticles with high heating rates. We find that melting starts from the surface with the formation of a premelting layer, as usual, but that the premelting layer does not extend to the interior under certain conditions.

View Article and Find Full Text PDF

How ice grows from premelting films and water droplets.

Nat Commun

January 2021

Departamento de Química Física (Unidad de I+D+i Asociada al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, 28040, Spain.

Close to the triple point, the surface of ice is covered by a thin liquid layer (so-called quasi-liquid layer) which crucially impacts growth and melting rates. Experimental probes cannot observe the growth processes below this layer, and classical models of growth by vapor deposition do not account for the formation of premelting films. Here, we develop a mesoscopic model of liquid-film mediated ice growth, and identify the various resulting growth regimes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!