Atomic layer deposition (ALD) was used to deposit a protective overcoating (AlO) on an industrially relevant Co-based Fischer-Tropsch catalyst. A trimethylaluminium/water (TMA/HO) ALD process was used to prepare ∼0.7-2.2 nm overcoatings on an incipient wetness impregnated Co-Pt/TiO catalyst. A diffusion-reaction differential equation model was used to predict precursor transport and the resulting deposited overcoating surface coverage inside a catalyst particle. The model was validated against transmission electron (TEM) and scanning electron (SEM) microscopy studies. The prepared model utilised catalyst physical properties and ALD process parameters to estimate achieved overcoating thickness for 20 and 30 deposition cycles (1.36 and 2.04 nm respectively). The TEM analysis supported these estimates, with 1.29 ± 0.16 and 2.15 ± 0.29 nm average layer thicknesses. In addition to layer thickness estimation, the model was used to predict overcoating penetration into the porous catalyst. The model estimated a penetration depth of ∼19 μm, and cross-sectional scanning electron microscopy supported the prediction with a deepest penetration of 15-18 μm. The model successfully estimated the deepest penetration, however, the microscopy study showed penetration depth fluctuation between 0-18 μm, having an average of 9.6 μm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp02491h | DOI Listing |
Nanomaterials (Basel)
December 2024
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China.
Nanomaterials, heralded as the "new materials of the 21st century" for their remarkable physical and chemical properties and broad application potential, have attracted substantial attention in recent years. Among these materials, which challenge traditional physical boundaries, nanodiamonds (NDs) are widely applied across diverse industries due to their exceptional surface multifunctionality and chemical stability. Nevertheless, atomic-level manipulation of NDs presents considerable challenges, which require detailed structural analysis to thoroughly elucidate their properties.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Biochemistry and Chemistry, La Trobe University, Bundoora, VIC 3086, Australia.
Surface-enhanced Raman scattering (SERS) is a powerful optical sensing platform that amplifies the target signals by Raman scattering. Despite SERS enabling a meager detection limit, even at the single-molecule level, SERS also tends to equally enhance unwanted molecules due to the non-specific binding of noise molecules in clinical samples, which complicates its use in complex samples such as bodily fluids, environmental water, or food matrices. To address this, we developed a novel non-fouling biomimetic SERS sensor by self-assembling an anti-adhesive, anti-fouling, and size-selective Lubricin (LUB) coating on gold nanoparticle (AuNP) functionalized glass slide surfaces via a simple drop-casting method.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Huazhong University of Science and Technology, School of Chemistry and Chemical Engineering, Luoyu Road 1037, 430074, Wuhan, CHINA.
Low-iridium acid-stabilized electrocatalysts for efficient oxygen evolution reaction (OER) are crucial for the market deployment of proton exchange membrane (PEM) water electrolysis. Manipulating the in situ reconstruction of Ir-based catalysts with favorable kinetics is highly desirable but remains elusive. Herein, we propose an atomic ordering strategy to modulate the dynamic surface restructuring of catalysts to break the activity/stability trade-off.
View Article and Find Full Text PDFAdv Mater
December 2024
Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
High contact resistance remains the primary obstacle that hinders further advancements of organic semiconductors (OSCs) in electronic circuits. While significant effort has been directed toward lowering the energy barrier at OSC/metal contact interfaces, approaches toward reducing another major contributor to overall contact resistance - the bulk resistance - have been limited to minimizing the thickness of OSC films. However, the out-of-plane conductivity of OSCs, a critical aspect of bulk resistance, has largely remained unaddressed.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Institute for MicroSystems Technology (iMST), Faculty of Mechanical & Medical Engineering, Furtwangen University, D-78120, Furtwangen im Schwarzwald, Germany.
Area-selective atomic layer deposition (ASD) is a bottom-up process that is of particular importance in the semiconductor industry, as it prevents edge defects and avoids cost-intensive lithography steps. This approach not only offers immense potential for the manufacture of active implants but can also be used to improve them. This review paper presents various processes that can be used for this purpose.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!