A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigating Drivers of Antireward in Addiction Behavior with Anatomically Specific Single-Cell Gene Expression Methods. | LitMetric

Investigating Drivers of Antireward in Addiction Behavior with Anatomically Specific Single-Cell Gene Expression Methods.

J Vis Exp

Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University.

Published: August 2022

Increasing rates of addiction behavior have motivated mental health researchers and clinicians alike to understand antireward and recovery. This shift away from reward and commencement necessitates novel perspectives, paradigms, and hypotheses along with an expansion of the methods applied to investigate addiction. Here, we provide an example: A systems biology approach to investigate antireward that combines laser capture microdissection (LCM) and high-throughput microfluidic reverse transcription quantitative polymerase chain reactions (RT-qPCR). Gene expression network dynamics were measured and a key driver of neurovisceral dysregulation in alcohol and opioid withdrawal, neuroinflammation, was identified. This combination of technologies provides anatomic and phenotypic specificity at single-cell resolution with high-throughput sensitivity and specific gene expression measures yielding both hypothesis-generating datasets and mechanistic possibilities that generate opportunities for novel insights and treatments.

Download full-text PDF

Source
http://dx.doi.org/10.3791/64014DOI Listing

Publication Analysis

Top Keywords

gene expression
12
addiction behavior
8
investigating drivers
4
drivers antireward
4
antireward addiction
4
behavior anatomically
4
anatomically specific
4
specific single-cell
4
single-cell gene
4
expression methods
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!