Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rectal cancer (RC) accounts for approximately one-third of colorectal cancer (CRC), with death rates increasing in patients younger than 50 years old. Magnetic resonance imaging (MRI) is routinely performed for tumor evaluation. However, the semantic features from images alone remain insufficient to guide treatment decisions. Functional MRIs are useful for revealing microstructural and functional abnormalities and nevertheless have low or modest repeatability and reproducibility. Therefore, during the preoperative evaluation and follow-up treatment of patients with RC, novel noninvasive imaging markers are needed to describe tumor characteristics to guide treatment strategies and achieve individualized diagnosis and treatment. In recent years, the development of artificial intelligence (AI) has created new tools for RC evaluation based on MRI. In this review, we summarize the research progress of AI in the evaluation of staging, prediction of high-risk factors, genotyping, response to therapy, recurrence, metastasis, prognosis, and segmentation with RC. We further discuss the challenges of clinical application, including improvement in imaging, model performance, and the biological meaning of features, which may also be major development directions in the future. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmri.28381 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!