AI Article Synopsis

  • The study investigates the effectiveness of transarticular screws versus a fiber tape construct for treating ligamentous Lisfranc injuries, noting ongoing debates about the best fixation method.
  • A controlled lab setting was used, comparing fixation methods on cadaver specimens to assess joint stability under various loads.
  • Results showed no significant differences in joint separation between the two methods during testing, with the fiber tape construct displaying fewer failures at higher loads.

Article Abstract

Background: The preferred method of fixation and surgical treatment for ligamentous Lisfranc injuries is controversial. Transarticular screws, bridge plating, fusion, and flexible fixation have been described, yet none have demonstrated superiority. Furthermore, screw fixation and plating often require secondary surgery to remove implants, leading surgeons to seek alternative fixation methods.

Purpose: To compare transarticular screws and a fiber tape construct under a spectrum of biomechanical loads by evaluating the diastasis at 3 joints in the Lisfranc complex.

Study Design: Controlled laboratory study.

Methods: Eight matched pairs of fresh, previously frozen lower extremity cadaveric specimens were fixed with either 2 cannulated transarticular crossed screws or a fiber tape construct with a supplemental intercuneiform limb. The diastasis between bones was measured at 3 midfoot joints in the Lisfranc complex: the Lisfranc articulation, the second tarsometatarsal joint, and the intercuneiform joint. Measurements were obtained for the preinjured, injured, and fixation conditions under static loading at 50% donor body weight. Specimens then underwent cyclic loading performed at 1 Hz and 100 cycles, based on 100-N stepwise increases in ground-reaction force from 100 to 2000 N, to simulate postoperative loading from the partial weightbearing stage to high-energy activities. Failure of fixation was defined as diastasis ≥2 mm at the Lisfranc articulation (second metatarsal-medial cuneiform joint).

Results: There were no significant differences in diastasis detected at the Lisfranc articulation or the intercuneiform joint throughout all loading cycles between groups. All specimens endured loading up to 50% body weight + 1400 N. Up to and including this stage, there were 2 failures in the cannulated transarticular crossed-screw group and none in the fiber tape group.

Conclusion: The fiber tape construct with a supplemental intercuneiform limb, which does not require later removal, may provide comparable biomechanical stability to cannulated transarticular crossed screws, even at higher loads.

Clinical Relevance: Ligamentous Lisfranc injuries are common among athletes. Therefore, biomechanical evaluations are necessary to determine stable constructs that can limit the time to return to play. This study compares the biomechanical stability of 2 methods of fixation for ligamentous injury through a wide spectrum of loading, including those experienced by athletes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9527447PMC
http://dx.doi.org/10.1177/03635465221118580DOI Listing

Publication Analysis

Top Keywords

fiber tape
20
transarticular screws
12
ligamentous lisfranc
12
tape construct
12
cannulated transarticular
12
lisfranc articulation
12
lisfranc
8
lisfranc injuries
8
screws fiber
8
joints lisfranc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!