Glucose and trehalose are the main energy sources used by honeybees () for daily activities. However, there is no validated point-of-care method to reliably measure both sugars. We performed an analytical validation of a portable human glucometer (Accu-Chek; Roche) for glucose measurement in honeybee hemolymph compared to a reference method (GluCH, UniCel DxC 600; Beckman Coulter). We used 30 pooled hemolymph samples collected from the antennae of anesthetized honeybees and diluted 1:4 in 0.9% saline. We evaluated dilution linearity, spike recovery, and inter- and intra-assay imprecision. Glucose concentration was measured over time (2 h, 4 h, 8 h, 12 h, 1 d, 2 d, 3 d, 7 d, 21 d, 28 d) at various storage temperature (25°C, 4°C, -20°C, -80°C). The trehalose concentration was measured indirectly by trehalase hydrolyzation. Glucose concentrations measured by both instruments had a strong correlation (0.985, < 0.0001) and a bias of -7.33 mmol/L (±1.96SD: 13.70 to -28.36), with linear agreement at <20 mmol/L (physiologic value: 100 mmol/L). The accuracy of the glucometer decreased at >20 mmol/L. Recovery of 115-130% of diluted spikes indicated good specificity. Inter- and intra-assay imprecision were 2.50% and 2.21%, respectively. Glucose concentrations fluctuated in stored samples dependent on time and temperature; however, glucose concentrations were constant with storage at -80°C for ≥28 d. The Accu-Chek glucometer is an adequate instrument to measure honeybee glucose concentration in hemolymph diluted with 0.9% NaCl, with good accuracy and precision at <20 mmol/L. Hemolymph storage at -80°C is suitable for long-term conservation of glucose.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9446297 | PMC |
http://dx.doi.org/10.1177/10406387221117233 | DOI Listing |
Objective: Functional MRI (fMRI) helps with the identification of eloquent cortex to assist with function preservation in patients who undergo epilepsy surgery. Language and memory tasks can even be used effectively in clinically involved pediatric patients. Most pediatric studies report on English speaking-only cohorts from English-dominant countries, yet languages other than English (LOEs) are increasingly prevalent in countries such as the US.
View Article and Find Full Text PDFAnal Chem
December 2024
Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
Mass spectrometry (MS)-based metabolomics often rely on separation techniques when analyzing complex biological specimens to improve method resolution, metabolome coverage, quantitative performance, and/or unknown identification. However, low sample throughput and complicated data preprocessing procedures remain major barriers to affordable metabolomic studies that are scalable to large populations. Herein, we introduce PeakMeister as a new software tool in the R statistical environment to enable standardized processing of serum metabolomic data acquired by multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS), a high-throughput separation platform (<4 min/sample) which takes advantage of a serial injection format of 13 samples within a single analytical run.
View Article and Find Full Text PDFACS Sens
December 2024
UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey.
Diverse analytical techniques are employed to scrutinize microplastics (MPs)─pervasive at hazardous concentrations across diverse sources ranging from water reservoirs to consumable substances. The limitations inherent in existing methods, such as their diminished detection capacities, render them inadequate for analyzing MPs of diminutive dimensions (microplastics: 1-5 μm; nanoplastics: < 1 μm). Consequently, there is an imperative need to devise methodologies that afford improved sensitivity and lower detection limits for analyzing these pollutants.
View Article and Find Full Text PDFAnn Nucl Med
December 2024
Department of Endocrinology and Metabolism, Rare Bone Disease Center, Amsterdam University Medical Centers (UMC), Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, The Netherlands.
Purpose: [F]NaF PET has become an increasingly important tool in clinical practice toward understanding and evaluating diseases and conditions in which bone metabolism is disrupted. Full kinetic analysis using nonlinear regression (NLR) with a two-tissue compartment model to determine the net rate of influx (K) of [F]NaF is considered the gold standard for quantification of [F]NaF uptake. However, dynamic scanning often is impractical in a clinical setting, leading to the development of simplified semi-quantitative parameters.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium.
Cheese is vulnerable to contamination with mycotoxins, particularly ochratoxin A (OTA) and aflatoxin M1 (AFM1). This study aims to develop and validate an analytical method for the detection and quantification of OTA and AFM1 in cheese and to assess their prevalence and associated risks. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was validated for detecting these mycotoxins in 41 cheese samples, including firm-ripened, spreadable, and plant-based alternatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!