HNRNPA2B1: RNA-Binding Protein That Orchestrates Smooth Muscle Cell Phenotype in Pulmonary Arterial Hypertension.

Circulation

Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles.

Published: October 2022

Background: RNA-binding proteins are master orchestrators of gene expression regulation. They regulate hundreds of transcripts at once by recognizing specific motifs. Thus, characterizing RNA-binding proteins targets is critical to harvest their full therapeutic potential. However, such investigation has often been restricted to a few RNA-binding protein targets, limiting our understanding of their function. In cancer, the RNA-binding protein HNRNPA2B1 (heterogeneous nuclear ribonucleoprotein A2B1; A2B1) promotes the pro-proliferative/anti-apoptotic phenotype. The same phenotype in pulmonary arterial smooth muscle cells (PASMCs) is responsible for the development of pulmonary arterial hypertension (PAH). However, A2B1 function has never been investigated in PAH.

Method: Through the integration of computational and experimental biology, the authors investigated the role of A2B1 in human PAH-PASMC. Bioinformatics and RNA sequencing allowed them to investigate the transcriptome-wide function of A2B1, and RNA immunoprecipitation and A2B1 silencing experiments allowed them to decipher the intricate molecular mechanism at play. In addition, they performed a preclinical trial in the monocrotaline-induced pulmonary hypertension rat model to investigate the relevance of A2B1 inhibition in mitigating pulmonary hypertension severity.

Results: They found that A2B1 expression and its nuclear localization are increased in human PAH-PASMC. Using bioinformatics, they identified 3 known motifs of A2B1 and all mRNAs carrying them. In PAH-PASMC, they demonstrated the complementary nonredundant function of A2B1 motifs because all motifs are implicated in different aspects of the cell cycle. In addition, they showed that in PAH-PASMC, A2B1 promotes the expression of its targets. A2B1 silencing in PAH-PASMC led to a decrease of all tested mRNAs carrying an A2B1 motif and a concomitant decrease in proliferation and resistance to apoptosis. Last, in vivo A2B1 inhibition in the lungs rescued pulmonary hypertension in rats.

Conclusions: Through the integration of computational and experimental biology, the study revealed the role of A2B1 as a master orchestrator of the PAH-PASMC phenotype and its relevance as a therapeutic target in PAH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588778PMC
http://dx.doi.org/10.1161/CIRCULATIONAHA.122.059591DOI Listing

Publication Analysis

Top Keywords

a2b1
15
rna-binding protein
12
pulmonary arterial
12
pulmonary hypertension
12
smooth muscle
8
phenotype pulmonary
8
arterial hypertension
8
rna-binding proteins
8
a2b1 promotes
8
integration computational
8

Similar Publications

Mechanistic insights into HNRNPA2B1: A comprehensive pan-cancer analysis and functional characterization in lung cancer.

Biochim Biophys Acta Mol Basis Dis

January 2025

The Key Laboratory of Advanced Interdisciplinary Studies, Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, 1 Xinzao Road, Panyu District, Guangzhou 511436, PR China. Electronic address:

Heterogeneous nuclear ribonucleoprotein A2B1 (HNRNPA2B1), a member of the A/B subfamily of hnRNPs, plays a critical role in tumorigenesis, yet its expression patterns, molecular mechanisms, and prognostic significance remain inadequately characterized. In this study, we performed a comprehensive pan-cancer analysis utilizing multiple public databases, revealing that HNRNPA2B1 is consistently overexpressed in most tumor types and correlates with poor prognosis across several malignancies. Pathway enrichment analysis highlighted its involvement in RNA alternative splicing, transport, and stability, processes that contribute to tumor progression.

View Article and Find Full Text PDF

Nuclear adenine activates hnRNPA2B1 to enhance antibacterial innate immunity.

Cell Metab

January 2025

Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai 200433, China; Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China; Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China. Electronic address:

Bacterial infection reprograms cellular metabolism and epigenetic status, but how the metabolic-epigenetic crosstalk empowers host antibacterial defense remains unclear. Here, we report that heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) is a sensor for metabolite adenine to launch an antimicrobial innate response through increasing Il1b transcription. Myeloid cell-specific Hnrnpa2b1-cKO mice are more susceptible to bacterial infection, while interleukin 1 beta (IL-1β) supplementation rescues the phenotype.

View Article and Find Full Text PDF

Background: Acute respiratory distress syndrome (ARDS) is a life-threatening and heterogeneous disorder leading to lung injury. To date, effective therapies for ARDS remain limited. Sepsis is a frequent inducer of ARDS.

View Article and Find Full Text PDF

Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discover that hippocampal and spinal cord motor neurons of mouse and human origin localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress.

View Article and Find Full Text PDF

Perioperative neurocognitive disorders (PND) is common in aged mild cognitive impairment (MCI) patients and can accelerate the progression to dementia. This process involves heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1)-mediated aggregates of stress granules (SGs), while RUVBL2 influences the dynamics of these SGs. Our research explored a new target for modulating hnRNAPA2/B1-SGs dynamics to accelerate their disassembly and potentially delay MCI progression due to PND.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!