In 2014, we participated in a special issue of Frontiers examining the neural processing of appetitive and aversive events. Specifically, we reviewed brain areas that contribute to the encoding of prediction errors and value versus salience, attention and motivation. Further, we described how we disambiguated these cognitive processes and their neural substrates by using paradigms that incorporate both appetitive and aversive stimuli. We described a circuit in which the orbitofrontal cortex (OFC) signals expected value and the basolateral amygdala (BLA) encodes the salience and valence of both appetitive and aversive events. This information is integrated by the nucleus accumbens (NAc) and dopaminergic (DA) signaling in order to generate prediction and prediction error signals, which guide decision-making and learning the dorsal striatum (DS). Lastly, the anterior cingulate cortex (ACC) is monitoring actions and outcomes, and signals the need to engage attentional control in order to optimize behavioral output. Here, we expand upon this framework, and review our recent work in which within-task manipulations of both appetitive and aversive stimuli allow us to uncover the neural processes that contribute to the detection of outcomes delivered to a conspecific and behaviors in social contexts. Specifically, we discuss the involvement of single-unit firing in the ACC and DA signals in the NAc during the processing of appetitive and aversive events in both social and non-social contexts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9381696 | PMC |
http://dx.doi.org/10.3389/fnsys.2022.926388 | DOI Listing |
Hum Brain Mapp
February 2025
Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA.
Converging lines of research indicate that inhibitory control is likely to be compromised in contexts that place competing demands on emotional, motivational, and cognitive systems, potentially leading to damaging impulsive behavior. The objective of this study was to identify the neural impact of three challenging contexts that typically compromise self-regulation and weaken impulse control. Participants included 66 healthy adults (M/SD = 29.
View Article and Find Full Text PDFInt J Eat Disord
January 2025
Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA.
Background: Patient and caregiver perspectives are critical in the evaluation of avoidant/restrictive food intake disorder (ARFID); however, little is understood about how caregiver and youth perceptions may differ. This study compared caregiver and youth reports among pediatric patients from an outpatient ARFID program.
Methods: Patients (217 individuals with ARFID, aged 8-17) and their caregivers completed the Nine-Item ARFID Screen (NIAS), a screening tool with parallel youth and caregiver report forms.
J Poult Sci
January 2025
Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan.
Trehalose (Tre) is composed of two molecules of D-glucose joined by an α,α-1,1 glucosidic linkage. Because Tre is utilized by the gut microbiome and enhances gut immunity in chickens, it is used as a feed ingredient. However, taste preference and metabolic dynamics of Tre in chickens are not fully understood.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston MA 02115.
The concentrations of extracellular and intracellular signaling molecules, such as dopamine and cAMP, change over both fast and slow timescales and impact downstream pathways in a cell-type specific manner. Fluorescence sensors currently used to monitor such signals are typically optimized to detect fast, relative changes in concentration of the target molecule. They are less well suited to detect slowly-changing signals and rarely provide absolute measurements of either fast and slow signaling components.
View Article and Find Full Text PDFElife
January 2025
Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, United States.
The central amygdala (CeA) has emerged as an important brain region for regulating both negative (fear and anxiety) and positive (reward) affective behaviors. The CeA has been proposed to encode affective information in the form of valence (whether the stimulus is good or bad) or salience (how significant is the stimulus), but the extent to which these two types of stimulus representation occur in the CeA is not known. Here, we used single cell calcium imaging in mice during appetitive and aversive conditioning and found that majority of CeA neurons (~65%) encode the valence of the unconditioned stimulus (US) with a smaller subset of cells (~15%) encoding the salience of the US.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!