AI Article Synopsis

  • In chronic myeloid leukemia (CML), the dysregulated activity of Aurora kinase A and PLK1 is linked to resistance to imatinib and persistent leukemic stem cells, potentially leading to more severe disease progression.
  • A new treatment strategy involving the combination of inhibitors for Aurora kinase A or PLK1 (danusertib or volasertib) with a WEE1 inhibitor (AZD1775) shows promise by significantly enhancing apoptosis and reducing cell viability in both TKI-sensitive and TKI-resistant CML cell lines.
  • This combination therapy demonstrated a notable reduction in the clonogenic potential of CD34+ CML progenitors from patients with advanced disease, suggesting new avenues for improving treatment outcomes for those with multi-T

Article Abstract

In chronic myeloid leukemia (CML), Aurora kinase A and Polo like kinase 1 (PLK1), two serine-threonine kinases involved in the maintenance of genomic stability by preserving a functional G2/M checkpoint, have been implicated in BCR::ABL1-independent resistance to the tyrosine kinase inhibitor (TKI) imatinib mesylate and in leukemic stem cell (LSC) persistence. It can be speculated that the observed deregulated activity of Aurora A and Plk1 enhances DNA damage, promoting the occurrence of additional genomic alterations contributing to TKI resistance and ultimately driving progression from chronic phase to blast crisis (BC). In this study, we propose a new therapeutic strategy based on the combination of Aurora kinase A or PLK1 inhibition with danusertib or volasertib, respectively, and WEE1 inhibition with AZD1775. Danusertib and volasertib used as single drugs induced apoptosis and G2/M-phase arrest, associated with accumulation of phospho-WEE1. Subsequent addition of the WEE1 inhibitor AZD1775 in combination significantly enhanced the induction of apoptotic cell death in TKI-sensitive and -resistant cell lines as compared to both danusertib and volasertib alone and to the simultaneous combination. This schedule indeed induced a significant increase of the DNA double-strand break marker γH2AX, forcing the cells through successive replication cycles ultimately resulting in apoptosis. Finally, combination of danusertib or volasertib+AZD1775 significantly reduced the clonogenic potential of CD34+ CML progenitors from BC patients. Our results may have implications for the development of innovative therapeutic approaches aimed to improve the outcomes of patients with multi-TKI-resistant or BC CML.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391055PMC
http://dx.doi.org/10.3389/fonc.2022.901132DOI Listing

Publication Analysis

Top Keywords

aurora kinase
12
danusertib volasertib
12
bcrabl1-independent resistance
8
resistance tyrosine
8
tyrosine kinase
8
kinase plk1
8
kinase
7
polo-like kinase-1
4
aurora
4
kinase-1 aurora
4

Similar Publications

Polyploidy is a common outcome of chemotherapies, but there is conflicting evidence as to whether polyploidy is an adverse, benign or even favourable outcome. We show Aurora B kinase inhibitors efficiently promote polyploidy in many cell types, resulting in the cell cycle exit in RB and p53 functional cells, but hyper-polyploidy in cells with loss of RB and p53 function. These hyper-polyploid cells (>8n DNA content) are viable but have lost long-term proliferative potential in vitro and fail to form tumours in vivo.

View Article and Find Full Text PDF

Targeting N-Myc in neuroblastoma with selective Aurora kinase A degraders.

Cell Chem Biol

January 2025

Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:

The N-Myc transcription factor, encoded by MYCN, is a mechanistically validated, yet challenging, target for neuroblastoma (NB) therapy development. In normal neuronal progenitors, N-Myc undergoes rapid degradation, while, in MYCN-amplified NB cells, Aurora kinase A (Aurora-A) binds to and stabilizes N-Myc, resulting in elevated protein levels. Here, we demonstrate that targeted protein degradation of Aurora-A decreases N-Myc levels.

View Article and Find Full Text PDF

In Silico Method for ssDNA Aptamer Binding with Aurora Kinase A Protein.

Methods Mol Biol

January 2025

Department of Biotechnology, College of Natural and Applied Science, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.

While traditional assay methods face challenges in detecting specific proteins, aptamers, known for their high specificity and affinity, are emerging as a valuable biomarker detection tool. Aurora kinase A (AURKA) plays a role in cell division and influences stem cell reprogramming. In this study, an in silico approach method was conducted for a random ssDNA aptamer sequence selection and its binding with AURKA.

View Article and Find Full Text PDF

Background: Human papillomavirus (HPV)-driven cancers include head and neck squamous cell carcinoma and cervical cancer and represent approximately 5% of all cancer cases worldwide. Standard-of-care chemotherapy, radiotherapy, and immune checkpoint inhibitors (ICIs) are associated with adverse effects and limited responses in patients with HPV-driven cancers. The integration of targeted therapies with ICIs may improve outcomes.

View Article and Find Full Text PDF

A Novel Triplet of Alisertib Plus Ibrutinib Plus Rituximab Is Active in Mantle Cell Lymphoma.

Cancers (Basel)

December 2024

Division of Hematology/Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA.

: Aurora (AK) A/B are oncogenic mitotic kinases that when over-expressed are poor prognostic markers in mantle cell lymphoma (MCL). : Alisertib, an AK-A inhibitor, has anti-tumor activity in relapsed/refractory (r/r) MCL patients. We evaluated alisertib plus ibrutinib in MCL to abrogate ibrutinib resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!