Nickel-iron nanoparticles encapsulated in carbon nanotubes prepared from waste plastics for low-temperature solid oxide fuel cells.

iScience

Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China.

Published: August 2022

Low-temperature solid oxide fuel cells (LT-SOFCs) are a promising next-generation fuel cell due to their low cost and rapid start-up, posing a significant challenge to electrode materials with high electrocatalytic activity. Herein, we reported the bimetallic nanoparticles encapsulated in carbon nanotubes (NiFe@CNTs) prepared by carefully controlling catalytic pyrolysis of waste plastics. Results showed that plenty of multi-walled CNTs with outer diameters (14.38 ± 3.84 nm) were observed due to the smallest crystalline size of Ni-Fe alloy nanoparticles. SOFCs with such NiFe@CNTs blended in anode exhibited remarkable performances, reaching a maximum power density of 885 mW cm at 500°C. This could be attributed to the well-dispersed alloy nanoparticles and high graphitization degree of NiFe@CNTs to improve HOR activity. Our strategy could upcycle waste plastics to produce nanocomposites and demonstrate a high-performance LT-SOFCs system, addressing the challenges of sustainable waste management and guaranteeing global energy safety simultaneously.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9389253PMC
http://dx.doi.org/10.1016/j.isci.2022.104855DOI Listing

Publication Analysis

Top Keywords

waste plastics
12
nanoparticles encapsulated
8
encapsulated carbon
8
carbon nanotubes
8
low-temperature solid
8
solid oxide
8
oxide fuel
8
fuel cells
8
alloy nanoparticles
8
nickel-iron nanoparticles
4

Similar Publications

The production of biodegradable and biobased polymers is one way to overcome the present plastic pollution while using cheap and abundant feedstocks. Polyhydroxyalkanoates are a promising class of biopolymers that can be produced by various microorganisms. Within the production process, batch-to-batch variation occurs due to changing feedstock composition when using waste streams, slightly different starting conditions, or biological variance of the microorganisms.

View Article and Find Full Text PDF

In this systematic review, advancements in plastic recycling technologies, including mechanical, thermolysis, chemical and biological methods, are examined. Comparisons among recycling technologies have identified current research trends, including a focus on pretreatment technologies for waste materials and the development of new organic chemistry or biological techniques that enable recycling with minimal energy consumption. Existing environmental and economic studies are also compared.

View Article and Find Full Text PDF

Upcycling polynorbornene derivatives into chemically recyclable multiblock linear and thermoset plastics.

Angew Chem Int Ed Engl

January 2025

Colorado State University, Chemistry and Biochemistry, 301 W. Pitkin Street, 215 UCB, 80523, United States, 80523, Fort Collins, UNITED STATES OF AMERICA.

Synthetic polymers have found widespread use with functional lifetimes from seconds to decades. However, the lack of end-of-life treatment for these plastics is causing a significant environmental and human health crisis due to their persistence and bioaccumulation. Upcycling post-consumer plastic waste to products with inherent recyclability is an attractive strategy to tackle this problem, as it can broaden the range of accessible materials and uncover unprecedented features while dealing with current plastic waste.

View Article and Find Full Text PDF

Investigating macro marine litter and beach cleanliness along Southern Vietnam beaches.

Mar Pollut Bull

January 2025

Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea. Electronic address:

Plastic contamination is a major issue for marine ecosystems, with macro-litter posing a growing threat globally. This study assesses macro-marine litter on Vung Tau beaches, Southern Vietnam, providing baseline data for marine litter pollution and identifying critical action plans for plastic control. Survey results showed litter density ranging from 0.

View Article and Find Full Text PDF

Advances in polyhydroxyalkanoate (PHA) production from renewable waste materials using halophilic microorganisms: A comprehensive review.

Sci Total Environ

January 2025

Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar. Electronic address:

Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polymers that can replace conventional plastics in different sectors. However, PHA commercialization is hampered due to their high production cost resulting from the use of high purity substrates, their low conversion into PHAs by using conventional microbial chassis and the high downstream processing cost. Taking these challenges into account, researchers are focusing on the use of waste by-products as alternative low-cost feedstocks for fast-growing and contamination-resistant halophilic microorganisms (Bacteria, Archaea…).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!