Cancer is still a global public health problem. Although remarkable success has been achieved in cancer diagnosis and treatment, the high recurrence and mortality rates remain severely threatening to human lives and health. In recent years, peptide nanomedicines with precise selectivity and high biocompatibility have attracted intense attention in biomedical applications. In particular, there has been a significant increase in the exploration of peptides and their derivatives for malignant tumor therapy and diagnosis. Herein, we review the applications of peptides and their derivatives in the diagnosis and treatment of bladder cancer, providing new insights for the design and development of novel peptide nanomedicines for the treatment of bladder cancer in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9389364 | PMC |
http://dx.doi.org/10.3389/fchem.2022.946865 | DOI Listing |
Theranostics
January 2025
Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
Acute liver failure (ALF) is characterized by rapid hepatic dysfunction, primarily caused by drug-induced hepatotoxicity. Due to the lack of satisfactory treatment options, ALF remains a fatal clinical disease, representing a grand challenge in global health. For the drug repositioning to ALF of mesalamine, which is clinically approved for the treatment of inflammatory bowel disease (IBD), we propose a supramolecular prodrug nanoassembly (SPNs).
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
: Community-acquired methicillin-resistant (CA-MRSA) greatly complicates the treatment of skin and soft tissue infections (SSTI). It was previously found that subcutaneous (SQ) treatment with the mononuclear phagocyte (MP)-selective activator complements peptide-derived immunostimulant-02 (CPDI-02; formerly EP67) and increases prophylaxis of outbred CD-1 mice against SQ infection with CA-MRSA. Here, we determined if treatment with CPDI-02 also increases curative protection.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Independent Laboratory of Nanomedicine, Medical University of Bialystok, 15-222 Bialystok, Poland.
Oral diseases, both acute and chronic, of infectious or non-infectious etiology, represent some of the most serious medical problems in dentistry. Data from the literature increasingly indicate that changes in the oral microbiome, and therefore, the overgrowing of pathological microflora, lead to a variety of oral-localized medical conditions such as caries, gingivitis, and periodontitis. In recent years, compelling research has been devoted to the use of natural antimicrobial peptides as therapeutic agents in the possible treatment of oral diseases.
View Article and Find Full Text PDFMacromol Biosci
January 2025
Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia.
Invasive fungal infections cause over 3.7 million deaths worldwide annually, underscoring the critical need for new antifungal agents. Developing selective antifungal agents is challenging due to the shared eukaryotic nature of both fungal and mammalian cells.
View Article and Find Full Text PDFACS Nano
January 2025
BK21 Program, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea.
The tumor-specific efficacy of the most current anticancer therapeutic agents, including antibody-drug conjugates (ADCs), oligonucleotides, and photosensitizers, is constrained by limitations such as poor cell penetration and low drug delivery. In this study, we addressed these challenges by developing, a positively charged, amphiphilic Chlorin e6 (Ce6)-conjugated, cell-penetrating anti-PD-L1 peptide nanomedicine (CPPD1) with enhanced cell and tissue permeability. The CPPD1 molecule, a bioconjugate of a hydrophobic photosensitizer and strongly positively charged programmed cell death-ligand 1 (PD-L1) binding cell-penetrating peptide (CPP), is capable of self-assembling into nanoparticles with an average size of 199 nm in aqueous solution without the need for any carriers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!