Estimating the crop leaf area index (LAI) accurately is very critical in agricultural remote sensing, especially in monitoring crop growth and yield prediction. The development of unmanned aerial vehicles (UAVs) has been significant in recent years and has been extensively applied in agricultural remote sensing (RS). The vegetation index (VI), which reflects spectral information, is a commonly used RS method for estimating LAI. Texture features can reflect the differences in the canopy structure of rice at different growth stages. In this research, a method was developed to improve the accuracy of rice LAI estimation during the whole growing season by combining texture information based on wavelet transform and spectral information derived from the VI. During the whole growth period, we obtained UAV images of two study areas using a 12-band Mini-MCA system and performed corresponding ground measurements. Several VI values were calculated, and the texture analysis was carried out. New indices were constructed by mathematically combining the wavelet texture and spectral information. Compared with the corresponding VIs, the new indices reduced the saturation effect and were less sensitive to the emergence of panicles. The determination coefficient (R) increased for most VIs used in this study throughout the whole growth period. The results indicated that the estimation accuracy of LAI by combining spectral information and texture information was higher than that of VIs. The method proposed in this study used the spectral and wavelet texture features extracted from UAV images to establish a model of the whole growth period of rice, which was easy to operate and had great potential for large-scale auxiliary rice breeding and field management research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386364 | PMC |
http://dx.doi.org/10.3389/fpls.2022.957870 | DOI Listing |
Front Neurosci
January 2025
Graduate Program in Electrical Engineering, Federal University of Pará - UFPA, Belém, Brazil.
Introduction: Wavelet thresholding techniques are crucial in mitigating noise in data communication and storage systems. In image processing, particularly in medical imaging like MRI, noise reduction is vital for improving visual quality and accurate analysis. While existing methods offer noise reduction, they often suffer from limitations like edge and texture loss, poor smoothness, and the need for manual parameter tuning.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Science and Technology, Ningbo University, Ningbo 315000, China.
The quality of surface morphology can reflect the electrical performance of silver-based contacts. Existing research on the correlation of morphological-electrical performance is based solely on empirical models from traditional visual inspections and only considers the impact of visually observable macro-textural features on electrical performance. However, the influence of micro-textural features on electrical performance should not be overlooked.
View Article and Find Full Text PDFActa Otolaryngol
January 2025
Laboratory of Otoneurology British Hospital, Montevideo, Uruguay.
Background: Gait instability and falls significantly impact life quality and morbi-mortality in elderly populations. Early diagnosis of gait disorders is one of the most effective approaches to minimize severe injuries.
Objective: To find a gait instability pattern in older adults through an image representation of data collected by a single sensor.
Sci Rep
January 2025
Department of MRI, Zhongshan City People's Hospital, No. 2, Sunwen East Road, Shiqi District, Zhongshan, 528403, Guangdong, China.
To investigate the potential of an MRI-based radiomic model in distinguishing malignant prostate cancer (PCa) nodules from benign prostatic hyperplasia (BPH)-, as well as determining the incremental value of radiomic features to clinical variables, such as prostate-specific antigen (PSA) level and Prostate Imaging Reporting and Data System (PI-RADS) score. A restrospective analysis was performed on a total of 251 patients (training cohort, n = 119; internal validation cohort, n = 52; and external validation cohort, n = 80) with prostatic nodules who underwent biparametric MRI at two hospitals between January 2018 and December 2020. A total of 1130 radiomic features were extracted from each MRI sequence, including shape-based features, gray-level histogram-based features, texture features, and wavelet features.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!