The pleiotropic benefits of statins may result from their impact on vascular inflammation. The molecular process underlying this phenomenon is not fully elucidated. Here, RNA sequencing designed to investigate gene expression patterns following CD47-SIRPα inhibition identifies a link between statins, efferocytosis, and vascular inflammation. In vivo and in vitro studies provide evidence that statins augment programmed cell removal by inhibiting the nuclear translocation of NFκB1 p50 and suppressing the expression of the critical 'don't eat me' molecule, CD47. Statins amplify the phagocytic capacity of macrophages, and thus the anti-atherosclerotic effects of CD47-SIRPα blockade, in an additive manner. Analyses of clinical biobank specimens suggest a similar link between statins and CD47 expression in humans, highlighting the potential translational implications. Taken together, our findings identify efferocytosis and CD47 as pivotal mediators of statin pleiotropy. In turn, statins amplify the anti-atherosclerotic effects of pro-phagocytic therapies independently of any lipid-lowering effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9390974 | PMC |
http://dx.doi.org/10.1038/s44161-022-00023-x | DOI Listing |
Nanomaterials (Basel)
December 2024
Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
Our group has synthesized a pleiotropic synthetic nanozyme redox mediator we term a "pleozyme" that displays multiple enzymatic characteristics, including acting as a superoxide dismutase mimetic, oxidizing NADH to NAD, and oxidizing HS to polysulfides and thiosulfate. Benefits have been seen in acute and chronic neurological disease models. The molecule is sourced from coconut-derived activated charcoal that has undergone harsh oxidization with fuming nitric acid, which alters the structure and chemical characteristics, yielding 3-8 nm discs with broad redox potential.
View Article and Find Full Text PDFWorld J Gastroenterol
December 2024
Department of Internal Medicine, University of Genoa, Genoa 16132, Italy.
Qu and Li emphasize a fundamental aspect of metabolic dysfunction-associated fatty liver disease in their manuscript, focusing on the critical need for non-invasive diagnostic tools to improve risk stratification and predict the progression to severe liver complications. Affecting approximately 25% of the global population, metabolic dysfunction-associated fatty liver disease is the most common chronic liver condition, with higher prevalence among those with obesity. This letter stresses the importance of early diagnosis and intervention, especially given the rising incidence of obesity and metabolic syndrome.
View Article and Find Full Text PDFFront Physiol
December 2024
Animal Sciences Division, Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan.
Melatonin, a pleiotropic hormone plays a vital role in enhancing livestock performance not only by regulating circadian rhythms but also by exhibiting antioxidant, immunomodulatory, and metabolic regulatory effects that collectively improve resilience, fertility, and productivity. Melatonin's synthesis is predominantly influenced by light exposure, with increased production in darkness; however, factors such as diet and health status further modulate its levels. By helping animals adapt to environmental stressors, melatonin boosts immune responses, mitigates chronic illnesses, and optimizes production efficiency.
View Article and Find Full Text PDFNefrologia (Engl Ed)
December 2024
Department of Medical Doctor Study Program, Faculty of Medicine, Hasanuddin University, Makassar City, South Sulawesi Province, Indonesia.
Background: Chronic kidney disease (CKD) is a major global health problem. Hyperphosphatemia is frequent in CKD and a reason for increased morbidity and mortality as it generates hyperparathyroidism, high fibroblast growth factor 23 (FGF23), and hypocalcemia. Available hyperphosphatemia therapies still have limitations, including risk of metal overload, cardiovascular calcification, and systemic adverse effects (AEs).
View Article and Find Full Text PDFJ Clin Invest
December 2024
Division of Nutritional Science and Obesity Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.
Despite the impressive clinical benefits and widespread adoption of sodium glucose cotransporter 2 inhibitors (SGLT2i) to treat all classes of heart failure, their cardiovascular mechanisms of action are poorly understood. Proposed mechanisms range broadly and include enhanced ketogenesis, where the mild ketosis associated with SGLT2i use is presumed to be beneficial. However, in this issue of the JCI, carefully conducted metabolic flux studies by Goedeke et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!