Vertical electrical sounding survey has been done to map and visualize resistivity distribution at Borena basin. The area is situated in Southern Main Ethiopian Rift, where Rirriba rift, Mega rift and associated fractures define the structural setting of the area. It is covered by Quaternary deposits, Quaternary and Tertiary basaltic rocks and Precambrian metamorphic rocks. Bullal basaltic formation outstretch in the Rirriba rift and it is thought to be potential groundwater aquifer. About 288 Vertical Electrical Sounding data were collected. Inflection and extreme points were used to identify characteristic points. Variograms are modeled and kriging interpolation is used to map distribution of resistivity, determined from characteristic points, in the area. Very low to low resistivity variations are mapped in northern end of the study area, whereas medium to moderately resistive ground are mapped in the middle and southern part of the area. The low resistivity horizon at the shallow subsurface could be due to salinity since the area occupy numerous saline craters and maars. Approximate mapping of large sets of Vertical Electrical Sounding data with geostatistical treatment has facilitated the interpretation and provided a sound picture of the subsurface. • Inflection and extreme points were extracted from smothed VES curves to identify characteristic points. • Variograms are modeled and kriging interpolation is used to map 3D distribution of resistivity data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386084PMC
http://dx.doi.org/10.1016/j.mex.2022.101792DOI Listing

Publication Analysis

Top Keywords

vertical electrical
16
electrical sounding
16
sounding data
12
characteristic points
12
data geostatistical
8
rirriba rift
8
inflection extreme
8
extreme points
8
identify characteristic
8
variograms modeled
8

Similar Publications

Geometric Study and Clinical Case Series for Mandible Reconstruction With a Single-Piece Scapular Free Flap.

Head Neck

January 2025

Division of Otolaryngology, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.

Background: Virtual surgical planning (VSP) with simple cutting templates could help surgeons preoperatively plan scapula reconstructions in the vertical and horizontal orientations.

Methods: Virtually, eight defects were created in ten healthy mandibles and reconstructed with the subject-specific scapula vertically and horizontally. In the clinical series, 15 single-piece scapula mandible reconstructions planned with in-house VSP and guided with simple templates were compared with 15 freehand reconstructions.

View Article and Find Full Text PDF

SLA-3D printing and bioactivity enhancement of zirconia anchor screws for temporomandibular joint disc reduction surgery.

J Mech Behav Biomed Mater

January 2025

Center of Stomatological, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, PR China; Jinan Key Laboratory of Oral Materials, Jinan, 250033, PR China. Electronic address:

A method is proposed for 3D printing and enhancing the surface bioactivity of zirconia ceramic anchor screws, specifically tailored for temporomandibular joint disc reduction surgery. Initially, the challenge posed by the brittleness and processing difficulties of fine ceramic anchor screws was addressed through the application of SLA-3D printing technology. This allowed for an exploration of the forming accuracy and biomechanical properties of the printed anchor screws.

View Article and Find Full Text PDF

Vestibular dysfunction has been reported as a potential cause in adolescent idiopathic scoliosis (AIS). However, it remained unclear how stochastic galvanic vestibular stimulation (GVS) affected kinetic performance of patients with AIS. This study aimed to investigate the effect of stochastic GVS on ground reaction forces (GRF) measures during obstacle negotiation among patients with AIS.

View Article and Find Full Text PDF

Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by o-xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.

View Article and Find Full Text PDF

Low-Impedance Hybrid Carbon Structures on SiO: A Sequential Gas-Phase Coating Approach.

Small Methods

January 2025

BCMaterials, Basque Centre for Materials, Applications and Nanostructures; UPV/EHU Science Park, Leioa, 48940, Spain.

Carbon coating on SiO surface is crucial for enhancing initial Coulombic efficiency (ICE) and cycling performance in batteries, while also buffering volume expansion. Despite its market prevalence, the effects of the carbon layer's quality and structure on the electrochemical properties of SiO remain underexplored. This study compares carbon layers produced via gas-phase and solid-phase coating methods, introducing an innovative technique that sequentially uses two gases to develop a low-impedance hybrid carbon structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!