Presently, an important step from basic research to practical applications is synthesizing nanostructured materials. Metal-organic structures, as well as coordination polymers, are a diverse group of materials with a wide range of potential and properties applications. It has been difficult to get these materials into commercial use because of many drawbacks. Polymers containing chelated units are described and assessed for their advancements and problems in preparation, properties, and structure. Here, a proposed approach based on designing coordination polymeric materials with chelated units using the metal-ligand approach (CPM-CU-MA) has been introduced for a columnar-layered plan, supramolecular components, and building levels. Nanocomposite materials can be formed through the thermal transformation of coordination polymers based on donor atoms. The polymeric metal chelates (PMCs) are categorized according to luminescent coordination polymer (LCoP) development. It is classified as macrocyclic intracomplex, polynuclear, and molecular according to its macrostructure. Supramolecular networks (SMNs) can be transformed into a coordination polymer by introducing cyclo-dehydrogenation of natural building blocks on a surface. The structure-property connections of LCPs can influence a framework of liquid crystal display (LCP) that has been given based on LC phase modulators with a large modulation depth and has useful applications in LC lens. In the spatial organization of PMCs, the main focus is on the commonalities and contrasts between higher- and lower-molecular-weight chelates based on molecularly imprinted sensors (MISs) and nanomaterial sensors for a wide range of uses. New functional nanoparticles based on the molecular components have exciting potential, as demonstrated by these findings based on parameters risk factors for human health, hazards reduction in the environment, lack of cost-effectiveness, environmental sustainability, and bioavailability of polymers with an overall performance of 95.3%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385305 | PMC |
http://dx.doi.org/10.1155/2022/3937375 | DOI Listing |
Nat Commun
January 2025
Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China.
The unsatisfactory ionic conductivity of solid polymer electrolytes hinders their practical use as substitutes for liquid electrolytes to address safety concerns. Although various plasticizers have been introduced to improve lithium-ion conduction kinetics, the lack of microenvironment understanding impedes the rational design of high-performance polymer electrolytes. Here, we design a class of Hofmann complexes that offer continuous two-dimensional lithium-ion conduction channels with functional ligands, creating highly conductive electrolytes.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Inorganic Chemistry, Shahid Beheshti University, 1983969411, Tehran, Iran.
In a systematic study, six pseudopolymorphic coordination polymers containing the ditopic 1,3-di(pyridin-4-yl)urea ligand (4bpu) constructed with d metal cations, possessing the formula {[M(4bpu)I]S} [(M = Zn, Cd and Hg), (S = MeOH or EtOH)], namely Zn-MeOH, Zn-EtOH, Cd-MeOH, Cd-EtOH, Hg- and Hg-EtOH were obtained. The title compounds were characterized by single-crystal X-ray diffraction analysis (SC-XRD), elemental analysis (CHN), FT-IR spectroscopy, thermogravimetric analysis (TGA), and powder X-ray diffraction (PXRD). The diffraction studies show that these compounds are isostructural 1D zig-zag chain coordination polymers which is also confirmed using XPac 2.
View Article and Find Full Text PDFJ Cell Biol
April 2025
Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
TBC1D20 deficiency causes Warburg Micro Syndrome in humans, characterized by multiple eye abnormalities, severe intellectual disability, and abnormal sexual development, but the molecular mechanisms remain unknown. Here, we identify TBC1D20 as a novel Rab11 GTPase-activating protein that coordinates vesicle transport and actin remodeling to regulate ciliogenesis. Depletion of TBC1D20 promotes Rab11 vesicle accumulation and actin deconstruction around the centrosome, facilitating the initiation of ciliogenesis even in cycling cells.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
While synthesizing circular polymers with telechelic polyolefin building blocks recently emerged as a promising strategy for addressing conventional polyethylenes' sustainability challenges, the lack of telechelic PP (PP) with sufficient difunctional purity for polycondensation has been limiting the development of circular polypropylenes with PP-like structures and properties. Here we described a combined approach of coordinative chain transfer polymerization and transition-metal-catalyzed quenching reaction with various acyl chlorides, affording PPs with a high difunctional ratio (up to ∼99%) and broad end functional group scope. The steric effect of polymeryl-Zn species and the role of Pd catalyst were revealed by DFT.
View Article and Find Full Text PDFChem Sci
January 2025
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
The efficient harvesting of triplet excitons is key to realizing high efficiency blue fluorescent organic light-emitting diodes (OLEDs). Triplet-triplet annihilation (TTA) up-conversion is one of the effective triplet-harvesting strategies. However, during the TTA up-conversion process, a high current density is necessary due to the competitive non-radiative triplet losses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!