In response to the current problem that micron-scale plugging agents cannot effectively plug shale nanopores and fractures, tetrameric poly(VS-St-BMA-BA) nanoparticles were synthesized by the Michael addition reaction using sodium vinyl sulfonate, styrene, butyl methacrylate, and butyl acrylate as raw materials. The nanoparticles poly(VS-St-BMA-BA) were characterized by infrared spectroscopy, particle size analysis, and thermogravimetric analysis. The particle size distribution of poly(VS-St-BMA-BA) at room temperature ranged from 62.17 to 96.44 nm, with a median particle size of 75.8 nm, and could withstand high temperature of 359.5 °C. The effects of poly(VS-St-BMA-BA) on the rheological parameters of drilling fluid and the effects of different temperatures on the median particle size were investigated by the drilling fluid performance testing methods and high-temperature stability testing methods. The results showed that the apparent viscosity, plastic viscosity, yield point, and high temperature and high pressure water loss of drilling fluid gradually decreased with the increase in poly(VS-St-BMA-BA) dosage; when the addition of poly(VS-St-BMA-BA) was 2.0%, the overall performance of drilling fluid was better, the filtration loss was 4.4 mL, and the drilling fluid had good water loss wall building performance. The median particle size of poly(VS-St-BMA-BA) was 132.60 nm (the particle size at room temperature was 75.8 nm) after standing for 16 h at 180 °C, indicating that poly(VS-St-BMA-BA) has good high-temperature stability and dispersion stability. The plugging performance and plugging mechanism of poly(VS-St-BMA-BA) under extreme conditions (high temperature) were investigated by the plugging performance test method and pressure transfer method. The results showed that the plugging rate of artificial mud cake and artificial core reached 48.18 and 88.75%, respectively, when the amount of poly(VS-St-BMA-BA) was added at 2.0%. In the pressure-transfer experiments, poly(VS-St-BMA)-BA) could invade the 2 mm position of the nanopore fracture on the core surface and form a sealing barrier layer to prevent the further invasion of liquid. Combined with the pressure-transfer experiment, it shows that poly(VS-St-BMA-BA) can enter the nanopore and fracture at a certain distance under the action of formation pressure and keep accumulating to form a tight blockage, which can effectively prevent the filtrate from entering the nanopore fracture of the shale formation. Poly(VS-St-BMA-BA) is expected to be used as a promising nano-plugging agent in water-based drilling fluids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386721PMC
http://dx.doi.org/10.1021/acsomega.2c02784DOI Listing

Publication Analysis

Top Keywords

particle size
24
drilling fluid
20
polyvs-st-bma-ba
14
median particle
12
high temperature
12
nanopore fracture
12
tetrameric polyvs-st-bma-ba
8
nano-plugging agent
8
plugging mechanism
8
water-based drilling
8

Similar Publications

The application of high-pressure grinding rolls (HPGR) for ore crushing is considered to be one of the effective ways to save energy and reduce emissions in the ore processing industry. The crushing effect is directly determined by the forces of ore material during roll crushing. However, the mechanical state of ore material in roll crushing and the effect of roll structure, process parameters, feed particle size, on the force during the crushing of ore material needs to be expanded.

View Article and Find Full Text PDF

Periodontitis, a common chronic inflammatory condition caused by bacteria, leads to loss of attachment, resorption of alveolar bone, and ultimately tooth loss. Therefore, reducing bacterial load and fostering alveolar bone regeneration are essential components in the treatment of periodontitis. In this study, we prepared smaller-sized Ag-Metal Organic Frameworks (Ag@MOF) and loaded with sodium alginate (Alg) hydrogel for periodontitis treatment.

View Article and Find Full Text PDF

Extraction of cellulose nanocrystals from date seeds using transition metal complex-assisted hydrochloric acid hydrolysis.

Int J Biol Macromol

January 2025

Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates. Electronic address:

In this study, the role of a transition metal complex in improving hydrolysis efficiency during nanocellulose production was analysed. Cellulose nanocrystals (CNCs) were extracted from date seeds by incorporating a copper metal complex during HCl hydrolysis. In contrast to traditional HCl hydrolysis at moderate conditions, which yielded only microcrystalline cellulose (MCC), this approach resulted in the extraction of CNCs with a 10 % improved yield compared to MCC.

View Article and Find Full Text PDF

Synthesis of BODIPYs using organoindium reagents and survey of their cytotoxicity and cell uptake on nervous system cells.

Bioorg Chem

December 2024

Universidade da Coruña, CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultad de Ciencias, Campus A Zapateira, 15071 A Coruña, Spain. Electronic address:

In this study, a series of BODIPY dyes were synthesized, containing various substituents at meso position. Further functionalization of the BODIPY framework at C2 and C2-C6 position(s) by palladium-catalysed cross-coupling reactions using organoindium reagents (RIn) was efficiently assessed, starting from C2(6)-halogenated BODIPYs, and their optical properties were measured. The cytotoxicity of BODIPY dyes on SH-SY5Y neuronal cells by MTT assay showed that those compounds bearing thien-2-yl and benzonitrile moieties at meso position, exhibited great efficiency in maintaining cell viability under all tested conditions (up to 50 µM for 24 h and 48 h).

View Article and Find Full Text PDF

An optimized microwave-assisted low methoxyl pectin extraction procedure was described. Six task specific deep eutectic solvents (TDES) were used in the extraction of pectin from bilimbi (LMABP) and pomelo peels (LMCGP). Response surface methodology-based optimization of the parameters like feed-to-solvent ratio, extraction time, and microwave power level results in 72.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!