Slippery liquid-infused surfaces (SLISs) are developed as a potential alternative to superhydrophobic surfaces (SHSs) to resolve the issues of poor durability in corrosion protection and wear resistance. In this work, we used a simple laser processing technology to prepare a SLIS on the aluminum alloy (7075) surface. The superhydrophobicities of the modified surface and the oil film formed by liquid injection make the corrosive medium difficult to directly contact the surface and thus have a significant effect on corrosion resistance. The water and oil repellent SLIS exhibits durable corrosion resistance and excellent tribological properties compared with the SHS. The anticorrosion and wear resistance performances provided by the composite film have been assessed by multiple methods including the electrochemical test, immersion test, and friction wear test. The results indicate that compared to the bare surface, laser-ablated surface (LAS), and fluoroalkyl silane-modified SHS, the SLIS composite coating has better corrosion resistance and wear resistance, which is of great significance to expand the potential applications of 7075 aluminum alloys. The work provides a research basis for expanding the practical application of SLISs in complex environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386839 | PMC |
http://dx.doi.org/10.1021/acsomega.2c02360 | DOI Listing |
Environ Sci Technol
January 2025
U.S. Environmental Protection Agency, E205-02, Research Triangle Park, P.O. Box 12055, Durham, North Carolina 27711, United States.
The complex, varied composition (i.e., rubbers/elastomers, carbon black, fillers, additives, and embedded road materials) and wide density range of tire road wear particles (TRWPs) present challenges for their isolation and identification from environmental matrices.
View Article and Find Full Text PDFSci Rep
January 2025
College of Mechanical Engineering, Quzhou University, Quzhou, 324000, China.
The both-sides machining method can obtain high precision cylindrical rollers, but there is a drawback that the lapping plate is easy to wear, which restricts further improvement in the quality of rollers machining. Aiming to solve this problem, a both-sides machining method using hard ceramic lapping plate is proposed. Friction and wear experiments with different lapping plate materials, along with the corresponding comparative machining experiments, demonstrated the superior performance of AlO ceramic lapping plate in terms of roundness (0.
View Article and Find Full Text PDFBiomater Adv
December 2024
Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou 510180, China; Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510180, China. Electronic address:
Metallic zinc (Zn) has been demonstrated to be a promising alternative to barrier membrane materials for guided bone regeneration. Surface roughness significantly affects the properties of degradable Zn-based metals, especially within the Janus micro-environments of tissue regeneration. However, the effects of optimal surface roughness on Zn remain unknown.
View Article and Find Full Text PDFActa Biomater
January 2025
The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China.
Natural materials are valued for their lightweight properties, high strength, impact resistance, and fracture toughness, often outperforming human-made materials. This paper reviews recent research on biomimetic composites, focusing on how composition, microstructure, and interfacial characteristics affect mechanical properties like strength, stiffness, and toughness. It explores biological structures such as mollusk shells, bones, and insect exoskeletons that inspire lightweight designs, including honeycomb structures for weight reduction and impact resistance.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093 China. Electronic address:
Hypothesis: The depth of research into the mechanism of droplet impacting structured surfaces dictates the efficacy of their applications. The impact stress generated when a droplet impacts a surface is a pivotal factor influencing the efficiency of surface applications, ultimately determining the extent of surface wear. Despite the systematic examination of impact force, there remains a scarcity of research on impact stress and its mitigation strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!