Background And Aim: In recent years, many studies have suggested that ancient wheat products might have beneficial effects on cardiometabolic risk profile, but little is known about their effect on gut microbiota (GM). The aim of the present study was to evaluate whether a replacement diet with pasta made from ancient wheat (AD) could influence the GM composition and its metabolites' production compared to a replacement diet with pasta made from modern wheat (CD).
Methods: A randomized, double-blinded crossover trial with two intervention phases was conducted on 20 clinically healthy adults (9 females; 11 males; mean age 43.1 ± 12.5 years). Study participants were assigned to consume pasta made using semi-whole flour from organic wheat that was either from ancient or modern control wheat for 8 weeks in a random order. An 8-week washout period was implemented between the interventions. Stool samples were collected from all subjects at the beginning and at the end of each intervention period. GM composition, and short- (SCFAs) and medium- chain fatty acids (MCFAs) production was evaluated.
Results: Dietary interventions did not produce significant diversity in the GM composition at higher ranks (phylum, class, order and family), but only at genus level. In detail, the AD significantly (adj. p < 0.05) changed the abundance of spp., spp., spp., and spp. The CD significantly affected the abundance of spp., spp., spp., spp., spp., spp., spp., spp., and spp. Regarding the production of SCFAs and MCFAs, AD resulted in a significant increase of fecal acetic (+0.7%), isobutyric (+30.1%), 2-methylbutyric (+64.2%), and isovaleric (+22.5%) acids. On the other hand, CD resulted in increased levels of isobutyric (+71.4%), 2-methylbutyric (+116.2%), isovaleric (+99%), and valeric (+21.4%) acids, and a reduction of butyric (-31.6%) and hexanoic (-66.4%) acids.
Conclusion: A short-term replacement diet with both ancient and modern wheat pasta determined significant changes in GM composition at the genus level but notably the AD resulted in a greater beneficial impact on anti-inflammatory SCFAs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386222 | PMC |
http://dx.doi.org/10.3389/fnut.2022.971666 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!