Clothing Design Style Recommendation Using Decision Tree Algorithm Combined with Deep Learning.

Comput Intell Neurosci

Fashion Design Department, Art and Design School, Changchun Humanities and Sciences College, Changchun 130117, Jilin, China.

Published: August 2022

Most clothing recommendation methods have problems such as high resource consumption and inconsistent subjectively labeled clothing labels. Based on this, a multilabel classification algorithm based on deep learning (DL) theory is introduced, based on which the clothing style recognition model is constructed. Next, the concept of the decision tree algorithm is given, and the clothing recommendation model is built based on this algorithm. Moreover, the clothing style recognition model based on a multilabel classification algorithm and the clothing recommendation system based on a decision tree algorithm are tested by building simulation experiments and combining neural network technology. Finally, the application of the decision tree algorithm and DL theory in clothing recommendation design is studied through the literature collection method. The research focus is to realize the recognition of clothing through decision tree algorithm and DL method to achieve the intelligent recommendation of clothing style. The results show that: (1) the neural network technology in DL theory can realize efficient recognition and classification of clothing style by automatically extracting image features and combining with a multilabel classification algorithm. (2) The decision tree algorithm can make an initial recommendation according to users' style preferences, then make implicit recommendations through user retrieval, browsing, and other operations, and make dynamic clothing style recommendations to users. (3) When the neural network based on a multilabel classification algorithm is trained, the precision, recall rate, and F1 values are 0.73, 0.43, and 0.55, respectively. (4) After using the clothing recommendation system based on the decision tree algorithm, the subjects' average satisfaction is 86.25%, indicating that this system can give users a better clothing recommendation experience. This exploration aims to provide a crucial reference for further improving the quality of clothing recommendation services. It has important theoretical significance and practical value for the development of artificial intelligence in the field of fashion design, and is expected to provide a reference for the development of bionics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385338PMC
http://dx.doi.org/10.1155/2022/5745457DOI Listing

Publication Analysis

Top Keywords

decision tree
28
tree algorithm
28
clothing recommendation
28
clothing style
20
multilabel classification
16
classification algorithm
16
clothing
15
algorithm
12
based multilabel
12
algorithm clothing
12

Similar Publications

Background: Amebiasis represents a significant global health concern. This is especially evident in developing countries, where infections are more common. The primary diagnostic method in laboratories involves the microscopy of stool samples.

View Article and Find Full Text PDF

Background: Child mortality is a reliable and significant indicator of a nation's health. Although the child mortality rate in Bangladesh is declining over time, it still needs to drop even more in order to meet the Sustainable Development Goals (SDGs). Machine Learning models are one of the best tools for making more accurate and efficient forecasts and gaining in-depth knowledge.

View Article and Find Full Text PDF

A spatial assessment of temporal forest cover changes is essential for effective forest conservation and management practices. This study analyzes changes in forest cover and the evolution of forest spatial configuration using Landsat satellite imagery over the past three decades (1990-2020) in Azad Jammu and Kashmir (AJK), Pakistan. To achieve the objectives, landscape metrics and forest fragmentation analyses were applied.

View Article and Find Full Text PDF

Background: Multidisciplinary tumor boards (MTBs) have been established in most countries to allow experts collaboratively determine the best treatment decisions for cancer patients. However, MTBs often face challenges such as case overload, which can compromise MTB decision quality. Clinical decision support systems (CDSSs) have been introduced to assist clinicians in this process.

View Article and Find Full Text PDF

Beyond XGBoost and SHAP: Unveiling true feature importance.

J Hazard Mater

January 2025

Faculty of Data Science, Musashino University, 3-3-3 Ariake Koto-ku, Tokyo 135-8181, Japan. Electronic address:

This paper outlines key machine learning principles, focusing on the use of XGBoost and SHAP values to assist researchers in avoiding analytical pitfalls. XGBoost builds models by incrementally adding decision trees, each addressing the errors of the previous one, which can result in inflated feature importance scores due to the method's emphasis on misclassified examples. While SHAP values provide a theoretically robust way to interpret predictions, their dependence on model structure and feature interactions can introduce biases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!