Few reports have described how university programs have controlled COVID-19 outbreaks. Emory University established a case investigation and contact tracing program in June 2020 to identify and mitigate transmission of SARS-CoV-2 in the Emory community. In February 2021, this program identified a surge in COVID-19 cases. In this case study, we present details of outbreak investigation, construction of transmission networks to assess clustering and identify groups for targeted testing, and program quality metrics demonstrating the efficiency of case investigation and contact tracing, which helped bring the surge under control. During February 10-March 5, 2021, Emory University identified 265 COVID-19 cases confirmed by nucleic acid testing in saliva or nasopharyngeal samples. Most students with COVID-19 were undergraduates (95%) and were affiliated with Greek life organizations (70%); 41% lived on campus. Network analysis identified 1 epidemiologically linked cluster of 198 people. Nearly all students diagnosed with COVID-19 (96%) were interviewed the same day as their positive test result. Of 340 close contacts, 90% were traced and 89% were tested. The median time from contact interview to first test was 2 days (interquartile range, 0-6 days); 43% received a positive test result during their quarantine. The surge was considered under control within 17 days, after which new cases were no longer epidemiologically linked. Early detection through systematic testing protocols and rapid and near-complete contact tracing, paired with isolation and quarantine measures, helped to contain the surge. Our approach emphasizes the importance of early preparation of adequate outbreak response infrastructure and staff to implement interventions appropriately and consistently during a pandemic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9678788PMC
http://dx.doi.org/10.1177/00333549221113866DOI Listing

Publication Analysis

Top Keywords

contact tracing
16
tracing program
8
emory university
8
case investigation
8
investigation contact
8
covid-19 cases
8
epidemiologically linked
8
positive test
8
test result
8
covid-19
6

Similar Publications

Indoor dust can adsorb various pollutants and long-term deposition can significantly impact air quality and human health. This study investigated the occurrence, source apportionment, and health risks associated with polycyclic aromatic hydrocarbons (PAHs) and their derivatives (d-PAHs) in indoor dust, by focusing on residential and public buildings in Nanjing, China. The concentration of 16 PAHs and 27 d-PAHs ranged from 511 to 5472 ng/g and from 422 to 2904 ng/g, with the most abundant compounds being fluoranthene and 1,2-benz[a]anthraquinone, respectively.

View Article and Find Full Text PDF

A Theoretical Analysis of Mass Testing Strategies to Control Epidemics.

Bull Math Biol

January 2025

Department of Mathematics, University of Trento, Via Sommarive 14, Povo, 38123, Trento, Italy.

One of the strategies used in some countries to contain the COVID-19 epidemic has been the test-and-isolate policy, generally coupled with contact tracing. Such strategies have been examined in several simulation models, but a theoretical analysis of their effectiveness in simple epidemic model is, to our knowledge, missing. In this paper, we present four epidemic models of either SIR or SEIR type, in which it is assumed that at fixed times the whole population (or a part of the population) is tested and, if positive, isolated.

View Article and Find Full Text PDF

Objective: Mpox, a zoonotic disease, has emerged as a significant international public health concern due to an increase in the number of cases diagnosed in non-endemic countries. To support public health response efforts to interrupt Mpox transmission in the community, this study aims to identify epidemiological and clinical aspects of Mpox in Jakarta, Indonesia.

Methods: The study collected Mpox data from the Provincial Health Department in Jakarta, Indonesia, from October 2023 to February 2024.

View Article and Find Full Text PDF

This study applies protection motivation theory (PMT) to the COVID-19 contact-tracing context by including privacy concerns, collective efficacy, and a mediator (fear of COVID-19) and tests it in the US and South Korea. The study uses a structural equation modeling (SEM) approach and a sample of 418 Americans and 444 South Koreans. According to the results, fear was positively associated with adoption intentions in the US sample but not in the Korean sample.

View Article and Find Full Text PDF

Integrating Artificial Intelligence (AI) across numerous disciplines has transformed the worldwide landscape of pandemic response. This review investigates the multidimensional role of AI in the pandemic, which arises as a global health crisis, and its role in preparedness and responses, ranging from enhanced epidemiological modelling to the acceleration of vaccine development. The confluence of AI technologies has guided us in a new era of data-driven decision-making, revolutionizing our ability to anticipate, mitigate, and treat infectious illnesses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!