Soil microbial biomass and microbial stoichiometric ratios are important for understanding carbon and nutrient cycling in terrestrial ecosystems. Here, we compiled data from 12245 observations of soil microbial biomass from 1626 published studies to map global patterns of microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), microbial biomass phosphorus (MBP), and their stoichiometry using a random forest model. Concentrations of MBC, MBN, and MBP were most closely linked to soil organic carbon, while climatic factors were most important for stoichiometry in microbial biomass ratios. Modeled seasonal MBC concentrations peaked in summer in tundra and in boreal forests, but in autumn in subtropical and in tropical biomes. The global mean MBC/MBN, MBC/MBP, and MBN/MBP ratios were estimated to be 10, 48, and 6.7, respectively, at 0-30 cm soil depth. The highest concentrations, stocks, and microbial C/N/P ratios were found at high latitudes in tundra and boreal forests, probably due to the higher soil organic matter content, greater fungal abundance, and lower nutrient availability in colder than in warmer biomes. At 30-100 cm soil depth, concentrations of MBC, MBN, and MBP were highest in temperate forests. The MBC/MBP ratio showed greater flexibility at the global scale than did the MBC/MBN ratio, possibly reflecting physiological adaptations and microbial community shifts with latitude. The results of this study are important for understanding C, N, and P cycling at the global scale, as well as for developing soil C-cycling models including soil microbial C, N, and P as important parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.16374DOI Listing

Publication Analysis

Top Keywords

microbial biomass
28
soil microbial
16
global scale
12
microbial
11
soil
9
concentrations mbc
8
mbc mbn
8
mbn mbp
8
soil organic
8
tundra boreal
8

Similar Publications

Metabolic engineering for single-cell protein production from renewable feedstocks and its applications.

Adv Biotechnol (Singap)

September 2024

School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China.

Proteins are indispensable for maintaining a healthy diet and performing crucial functions in a multitude of physiological processes. The growth of the global population and the emergence of environmental concerns have significantly increased the demand for protein-rich foods such as meat and dairy products, exerting considerable pressure on global food supplies. Single-cell proteins (SCP) have emerged as a promising alternative source, characterized by their high protein content and essential amino acids, lipids, carbohydrates, nucleic acids, inorganic salts, vitamins, and trace elements.

View Article and Find Full Text PDF

The goal of this study was to characterize the microbial profile of two different fresh pork cuts, bootjack (BJ) trim and tenderloin (TL), through a 16S rRNA sequencing workflow developed specifically for investigating low-biomass fresh meat within a commercial production schedule. Additionally, this study aimed to determine a baseline prevalence and enumeration profile across these two fresh pork cuts. Results showed that microbiome diversity was different between the BJ and TL, and also differed significantly by processing date.

View Article and Find Full Text PDF

Synchronously degradation of biogas slurry and decarbonization of biogas using microbial fuel cells.

J Environ Sci Health A Tox Hazard Subst Environ Eng

January 2025

School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, Qingdao, China.

Two-chamber microbial fuel cell (MFC) with biogas slurry (BS) of corn stover as the anode substrate and as the cathode substrate was investigated to solve the problem of the accumulation of wastewater generated from biogas plants and to achieve low-cost separation of CO from biogas. A simple two-compartment MFC was constructed using biocatalysis and inexpensive materials without expensive catalysts. The performance of MFC (X1-W, Y1-W, Z1-W) with different biogas solution concentrations as anode substrate and MFC (X2-C, Y2-C, Z2-C) with as biocathode were compared, respectively.

View Article and Find Full Text PDF

The rate of glucose metabolism sets the cell morphology across yeast strains and species.

Curr Biol

January 2025

Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands. Electronic address:

Yeasts are a diverse group of unicellular fungi that have developed a wide array of phenotypes and traits over 400 million years of evolution. However, we still lack an understanding of the biological principles governing the range of cell morphologies, metabolic modes, and reproductive strategies yeasts display. In this study, we explored the relationship between cell morphology and metabolism in sixteen yeast strains across eleven species.

View Article and Find Full Text PDF

Long-term response mechanism of bacterial communities to chemical oxidation remediation in petroleum hydrocarbon contaminated groundwater.

J Hazard Mater

January 2025

College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University, Beijing 100875, PR China. Electronic address:

The limited understanding of microbial response mechanism remains as a bottleneck to evaluate the long-term remediation effectiveness of in situ chemical oxidation in contaminated groundwater. In this study, we investigated long-term response of bacterial communities throughout five remediation stages of pre-oxidation, early-oxidation, late-oxidation, early-recovery and late-recovery. By analyzing bacterial biomass, taxa, diversity and metabolic functions, this work identified the consistently suppressed glyceraldehyde-3-phosphate dehydrogenase pathway and the enrichment of naphthalene degradation pathways for secondary products, suggesting persistent oxidation stress and enhanced microbial utilization of lower-molecular weight carbon sources at the oxidation and early-recovery stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!