A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Priori-guided and data-driven hybrid model for wind power forecasting. | LitMetric

Priori-guided and data-driven hybrid model for wind power forecasting.

ISA Trans

Department of Artificial Intelligence and Automation, School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China. Electronic address:

Published: March 2023

To overcome the high uncertainty and randomness of wind and enable the grid to optimize advance preparation, a priori-guided and data-driven hybrid method is proposed to provide accurate and reasonable wind power forecasting results. Fuzzy C-Means (FCM) clustering algorithm is used first to recognize the characteristics of the weather in different regions. Then, for the purpose of making full use of both priori information and collected measured data, a three-stage hierarchical framework is designed. First, via fuzzy inference and dimension reduction of Numerical Weather Prediction (NWP), more applicable wind speed information is obtained. Second, the accessible wind power generation patterns are served as a guide for mining the actual power curve. Third, the forecasted power is derived through the recorded data and the predictable wind conditions via data-driven model. This forecasting framework ingeniously introduces a gateway that can import priori knowledge to steer the iterative learning, thus possessing both adaptive learning ability and Volterra polynomial representation, and can present forecasted outcomes with robustness, accuracy and interpretability. Finally, a real-world dataset of a wind farm as well as an open source dataset are used to verify the performance of the proposed forecasting method. Results of the ablation analyses and comparative experiments demonstrate that the introduction of domain knowledge improves the forecasting performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2022.07.028DOI Listing

Publication Analysis

Top Keywords

wind power
12
priori-guided data-driven
8
data-driven hybrid
8
power forecasting
8
wind
7
power
5
forecasting
5
hybrid model
4
model wind
4
forecasting overcome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!