This work evaluated the potential mechanism of casein protein (CP) in enhancing the 3D printing performance of cassava starch (CS) gel in terms of the multi-scale structure of starch and gel properties. The addition of CP could increase the average molecular weight (R) of starch after thermal processing, which reduced the line width and increased the centre height of the 3D-printed product, despite the reduction of the structural recovery of the gel system. In addition, the increase in CS content caused a decrease in the short-range ordered structure of starch, resulting in a decline in relaxation time and an increase in free water content (A23), which in turn provided the gel system with a greater elastic modulus and ultimately increased the printing precision of 3D printed products. This study presented meaningful information for the application of 3D printing to starch-protein complex foods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2022.119827 | DOI Listing |
Int J Biol Macromol
January 2025
College of Biological Engineering, Sichuan University of Science & Engineering, Yibin 643000, China; Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, Yibin 643000, China.
Glutinous and japonica sorghum can be applied to different production processes by their amylopectin content and starch structure. However, the differences in the fine structure and physiochemistry properties of their starches, as well as their fermentation properties remain unclear. Compared with japonica sorghum, glutinous sorghum has a higher amylopectin content, short amylose chain content, relative crystallinity, and ∆H, but lower setback (SB), and starch granule size.
View Article and Find Full Text PDFJ Food Sci Technol
January 2025
Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato 80, 6121, Campinas, SP 3083-862 Brazil.
Unlabelled: The effects of high hydrostatic pressure (HHP) (400-650 MPa) and holding temperature (25-50 °C) in thermally assisted HHP processing on multi-scale structure of starch (granule, crystalline and molecular), techno-functional properties, and digestibility of sorghum starch (SS) were evaluated. Response surface methodology has verified that the process impact on the modification of SS was dependent primarily on the pressure level. As HHP increased, processed SS progressively lost their granular structure and Maltese cross, indicating gradual structural disorder within the granules.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; ONIRIS - GEPEA (UMR CNRS 6144), Site de la Géraudière CS 82225, 44322, Nantes cedex 3, France.
This study explores the innovative combined effects of alkaline isolation with ultrasound pretreatment on the physicochemical properties of acorn (Quercus brantii) starch. The optimal pH for maximizing the yield of alkaline-isolated acorn starch (AAS) was determined, followed by comparison with alkaline-isolated defatted acorn starch (ADAS), ultrasound-pretreated acorn starch (UAS), and ultrasound-pretreated defatted acorn starch (UDAS). The results demonstrated substantial improvements in yield and purity, with the highest yield (68.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy.
This study presents an efficient and environmentally sustainable synthesis of ZnO nanoparticles using a starch-mediated sol-gel approach. This method yields crystalline mesoporous ZnO NPs with a hexagonal wurtzite structure. The synthesized nanoparticles demonstrated remarkable multifunctionality across three critical applications.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China. Electronic address:
This study aimed to investigate the effects of laminarin (LA) and ferulic acid (FA) on the gelatinization, rheological properties, freeze-thaw stability, and digestibility of cassava starch (CS). The results indicated that LA increased the peak viscosity, trough viscosity, final viscosity, storage modulus, and loss modulus of CS, while decreasing the breakdown viscosity. Conversely, FA exerted opposite effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!