Dissolved organic matter (DOM) has important impacts on the transportation of antibiotics through chemical and biological processes in composting. The interaction between DOM and antibiotics is reciprocal. The interaction between DOM ligands and antibiotics could be characterized based on a technique combining parallel factor analysis (PARAFAC) and microbial community structure analysis. However, PARAFAC cannot reveal the dynamic changes in each DOM peak in one PARAFAC component under antibiotic stress. In this study, two-dimensional correlation spectroscopy (2DCOS) combined with PARAFAC and bacterial community diversity analyses were employed to reveal the effects of oxytetracycline (OTC) stress and the key microorganisms on the transformation of different fluorescent peaks from DOM PARAFAC components during chicken manure composting. The results showed that OTC inhibits the transformation between DOM PARAFAC components by inhibiting the core microbial activities involved in the transformation of DOM components. Protein-like components (C1 and C2) were more sensitive to OTC residue, and components with a high humification degree promoted the degradation of OTC. The interaction between special DOM PARAFAC components and certain bacteria affects the degradation of OTC. The DOM PARAFAC components A2(C1), B1(C2), B2(C2) and Z1(C4) enhanced OTC degradation by stimulating the genera Pseudomonas, Glycomyces and Hyphomicrobium. With these promising results, the true effect of DOM PARAFAC components on the degradation of OTC can be revealed, which is helpful for addressing antibiotic contamination to improve the bioavailability of compost products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2022.119975 | DOI Listing |
J Hazard Mater
December 2024
College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China. Electronic address:
The interactions between microplastic-derived dissolved organic matter (MPs-DOM) and heavy metals (Cu, Pb, and Cd) regulate the complex environmental transport behavior of pollutants in terrestrial and aquatic environments. In this study, fluorescence excited emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC) and electrospray ionization coupled Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) were employed to investigate the complexation mechanism of MPs-DOM with heavy metals, as well as the effects of different environmental occurrences of MPs-DOM on the transport behaviors of heavy metals in saturated porous medium. The findings demonstrated that MPs-DOM, particularly humic-like substances containing aromatic structures and various oxygen functional groups, could form stable complexes with heavy metals.
View Article and Find Full Text PDFWater Res
December 2024
State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
Dissolved organic matter (DOM) represents one of the most active elements in aquatic systems, whose fraction is engaged in chemical and biological reactions. However, fluorescence, molecular diversity and variations of DOM in groundwater systems with the alteration of surface water recharge remain unclear. Herein, Excitation-emission matrix (EEM) fluorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) combined with principal component coefficients, parallel factor analyses (PARAFAC) with two‒dimensional correlation spectroscopy (2D-COS) were applied in this study.
View Article and Find Full Text PDFSci Total Environ
January 2025
Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 101408, China. Electronic address:
The biogeochemical processes of organic matter exhibit notable variability and unpredictability in marginal seas. In this study, the abiologically and biologically driving effects on particulate organic matter (POM) and dissolved organic matter (DOM) were investigated in the Yellow Sea and Bohai Sea of China, by introducing the cutting-edge network inference tool of deep learning. The concentration of particulate organic carbon (POC) was determined to characterize the status of POM, and the fractions and fluorescent properties of DOM were identified through 3D excitation-emission-matrix spectra (3D-EEM) combined parallel factor analysis (PARAFAC).
View Article and Find Full Text PDFSci Total Environ
January 2025
Institute for Water Quality and Resource Management, TU Wien, Karlsplatz 13/226, 1040 Vienna, Austria.
Fluorescence fingerprinting is a technique to uniquely characterize water samples based on their distinct composition of dissolved organic matter (DOM) measured via 3D fluorescence spectroscopy. It is an effective tool for monitoring the chemical composition of various water systems. This study examines a river affected by several municipal and industrial wastewater treatment plant (WWTP) effluents and aims to source-tracing them via fluorescence fingerprints based on parallel factor analysis (PARAFAC) components.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
To explore the source information and composition characteristics of dissolved organic matter (DOM) in different regions of water bodies in northern cities, considering the urban water system of Shijiazhuang, Hebei Province as an example, ultraviolet-visible spectroscopy (UV-vis) and three-dimensional fluorescence parallel factor analysis (EEM-PARAFAC) were used to explain the optical parameters, abundance, and proportion of different components of DOM in water bodies of different regions. The results showed that: ① The concentrations of NO-N, NO-N, NH-N, TN, TP, and COD in the upstream were significantly lower than those in urban water bodies and downstream (<0.01), and TSI increased after the water entered the city.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!