Isotopic composition (δC and δN) in the soil-plant system of subtropical urban forests.

Sci Total Environ

Centro Universitário Adventista de Sao Paulo, Estrada de Itapecerica 5859, 05858-001, Sao Paulo, Brazil; Universidade de Guarulhos, R. Eng. Prestes Maia, 88-07023-070 Guarulhos, Brazil. Electronic address:

Published: December 2022

This study brings information on the dynamics of C and N in urban forests in a subtropical region. We tested the hypothesis that C and N isotopic sign of leaves and soil and physiological traits of trees would vary from center to periphery in a megacity, considering land uses, intensity of automotive fleet and microclimatic conditions. 800 trees from four fragments were randomly chosen. Soil samples were collected at every 10 cm in trenches up to 1 m depth to analyze C and N contents. Both, plants and soil were assessed for δC, δN, %C and %N. Physiological traits [carbon assimilation (A)], CO internal and external pressure ratio (Pi/Pa) and intrinsic water use efficiency iWUE were estimated from δC and Δ δC in leaves and soil ranged from -27.42 ‰ to -35.39 ‰ and from -21.22 ‰ to -28.18 ‰, respectively, and did not vary along the areas. Center-periphery gradient was not evidenced by C. Emissions derived from fossil fuel and distinct land uses interfered at different levels in δC signature. δN in the canopy and soil varied clearly among urban forests, following center-periphery gradient. Leaf δN decreased from the nearest forest to the city center to the farthest, ranging from <3 ‰ to <-3 ‰. δN was a good indicator of atmospheric contamination by NO emitted by vehicular fleet and a reliable predictor of land use change. %N followed the same trend of δN either for soils or leaves. Forest fragments located at the edges of the center-periphery gradient presented significantly lower A and Pi/Pa ratio and higher iWUE. These distinct physiological traits were attributed to successional stage and microclimatic conditions. Results suggest that ecosystem processes related to C and N and ecophysiological responses of urban forests vary according to land use and vehicular fleet.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.158052DOI Listing

Publication Analysis

Top Keywords

urban forests
12
δc δn
8
leaves soil
8
physiological traits
8
center-periphery gradient
8
δc
5
soil
5
isotopic composition
4
composition δc
4
δn
4

Similar Publications

Effects of urban sprawl due to migration on spatiotemporal land use-land cover change: a case study of Bartın in Türkiye.

Sci Rep

January 2025

Department of Forest Engineering, Faculty of Forestry, Kastamonu University, Kastamonu, Türkiye, Turkey.

Rapid urban growth is a subject of worldwide interest due to environmental problems. Population growth, especially migration from rural to urban areas, leads to land use and land cover (LULCC) changes in urban centres. Therefore, LULCC and urban growth analyses are among the studies that will help decision-makers achieve better sustainable management and planning.

View Article and Find Full Text PDF

Active transportation, such as cycling, improves mobility and general health. However, statistics reveal that in low- and middle-income countries, male and female cycling participation rates differ significantly. Existing literature highlights that women's willingness to use bicycles is significantly influenced by their perception of security.

View Article and Find Full Text PDF

Investigation and modeling of land use effects on water quality in two NYC water supply streams.

J Environ Manage

January 2025

71 Smith Ave., Bureau of Water Supply, New York City Department of Environmental Protection, Kingston, NY, 12401, USA.

The paired watershed monitoring approach is widely used to investigate hydrologic processes and water quality, providing streamflow and water quality records for long-term trend analysis, as well as data for developing and testing hydrologic models. In this study we use 20 years of streamflow and water quality data, along with a watershed model, to examine sources of stream nutrients and their changes over time in two small streams within the New York City water supply system. We compare sources and trends in stream nitrate and dissolved phosphorus in the urbanized Amawalk watershed with those of the predominantly forested Boyd Corners watershed in the Croton system of reservoirs.

View Article and Find Full Text PDF

Identifying landscape patterns conducive to pollutant transport control is of vitally importance for water quality protection. However, it remains unclear which landscape patterns can weaken the transport capacity of pollutants entering water bodies. To fill this gap, this study proposes a new framework.

View Article and Find Full Text PDF

Land use change threatens global biodiversity and compromises ecosystem functions, including pollination and food production. Reduced taxonomic α-diversity is often reported under land use change, yet the impacts could be different at larger spatial scales (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!