Background: Sepsis is a leading cause of neonatal death. Intrapartum azithromycin reduces neonatal nasopharyngeal carriage of potentially pathogenic bacteria, a prerequisite for sepsis. Early antibiotic exposure has been associated with microbiota perturbations with varying effects. This study aims to understand the effect of intrapartum azithromycin intervention on the developing nasopharyngeal microbiota of the child.
Methods: Using 16S rRNA gene sequencing, we analysed the microbiota of 343 nasopharyngeal samples collected from birth to 12 months from 109 healthy infants selected from a double-blind randomized placebo-controlled clinical trial conducted in the Gambia (PregnAnZI-1). In the trial, 829 women were given 2g oral azithromycin or placebo (1:1) during labour with the objective of reducing bacterial carriage in mother and child during the neonatal period. The post-hoc analysis presented here assessed the effect of the intervention on the child nasopharyngeal microbiota development.
Findings: 55 children were from mothers given azithromycin and 54 from mothers given placebo. Comparing arms, we found an increase in alpha-diversity at day-6 (p = 0·018), and a significant effect on overall microbiota composition at days 6 and 28 (R = 4.4%, q = 0·007 and R = 2.3%, q = 0·018 respectively). At genus level, we found lower representation of Staphylococcus at day-6 (q = 0·0303) and higher representation of Moraxella at 12 months (q = 0·0443). Unsupervised clustering of samples by microbial community similarity showed different community dynamics between the intervention and placebo arms during the neonatal period.
Interpretation: These results indicate that intrapartum azithromycin caused short-term alterations in the nasopharyngeal microbiota with modest overall effect at 12 months of age. Further exploration of the effects of these variations on microbiome function will give more insight on the potential risks and benefits, for the child, associated with this intervention.
Funding: This work was jointly funded by the Medical Research Council (UK) (MC_EX_MR/J010391/1/MRC), Bill & Melinda Gates Foundation (OPP1196513), and MRCG@LSHTM Doctoral Training Program.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420482 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2022.104227 | DOI Listing |
Lancet Microbe
January 2025
Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital-University Medical Center Utrecht, Utrecht, Netherlands. Electronic address:
Background: Live attenuated influenza vaccines (LAIVs) alter nasopharyngeal microbiota in adults. It is poorly understood why LAIV immunogenicity varies across populations, but it could be linked to the microbiome. We aimed to investigate the interactions between intranasal immunisation with LAIV and nasopharyngeal microbiota composition in children from The Gambia.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Microbiology, Division of Laboratory Medicine, Oslo University Hospital, 0372, Oslo, Norway.
The respiratory tract is colonized with low-density microbial communities, which have been shown to impact human respiratory health through microbiota-host interactions. However, a lack of fast and cost-effective nucleic acid extraction method for low-microbial biomass samples hinders investigation of respiratory microbiota. Here, we performed a pilot study to assess the suitability of the NAxtra nucleic acid extraction protocol for profiling bacterial microbiota in respiratory samples.
View Article and Find Full Text PDFIntegr Cancer Ther
January 2025
Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.
Objective: To observe the clinical efficacy of Dendrobium officinale in the treatment of radiotherapy-induced oral mucositis in nasopharyngeal carcinoma patients, and to explore its regulating effect on immune function and oral microbiota by comparing immune-related factors and oral microbiota before and after the intervention.
Methods: We conducted a randomized double-blinded controlled trial in Zhejiang Cancer Hospital. Sixty patients with nasopharyngeal cancer combined with radiotherapy-induced oral mucositis were randomly divided into a study group and control group, with 30 cases in each group The study group used compound vitamin B12 solution and Dendrobium tea drink, and the control group simply used compound vitamin B12 solution rinse.
Microorganisms
December 2024
Beef Cattle Institute, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
Metaphylaxis or treating the entire population of cattle at arrival with an antimicrobial has been studied extensively in the cattle industry; however, little information is available on the impacts of treating only a proportion of the population with antimicrobials at arrival. The study objective was to determine potential associations between the proportion of animals in a pen treated with antimicrobial therapy with pen performance and nasopharyngeal microbiome. Yearling steers (n = 160) were randomly allocated to study pens (n = 40) and pens were systematically randomized to one of two antimicrobial treatments (META: all four head received tulathromycin; MIXED: two of four head randomly selected to receive tulathromycin).
View Article and Find Full Text PDFLin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi
January 2025
To explore the hypothesis of "pathogen storage pool" by analyzing the local microbial community of adenoids. Under the guidance of a 70° nasal endoscope, sterile swabs were used to collect secretions from the adenoid crypts of the subjects. The samples were sent to the laboratory for DNA extraction and standard bacterial 16S full-length sequencing analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!