Purpose: Chronic kidney disease (CKD), characterized as renal dysfunction and multi-system damage, has become a serious public health problem with high prevalence and mortality. Rheum palmatum L. (rhubarb) is one of the most widely used Chinese herb with renal protective activity. However, the active components and underlying mechanisms of rhubarb remain unknown. In this work, we tried to explore the pharmacological mechanism of chrysophanol, a main anthraquinone from rhubarb, against CKD by in vivo and in vitro models.
Study Design: The therapeutic effect of chrysophanol and its underlying mechanism were investigated using CKD mouse model induced by unilateral ureteral occlusion (UUO), and human kidney 2 (HK-2) cells stimulated by TGF-β1 in vivo.
Methods: The impact of chrysophanol on renal function, inflammation, fibrosis of CKD mice were evaluated. Then, the protein expressions of FN1, collagen ɑI, α-SMA, NF-κB and naked keratinocyte homolog 2 (NKD2) were investigated. In vitro studies, the inhibition on inflammation and fibrogenesis by chrysophanol was further validated in TGF-β1-stimulated HK2 cells, and the regulation of chrysophanol on NKD2/NF-κB pathway was analyzed. Moreover, NKD2 was overexpressed in HK-2 cells to confirm the role of NKD2/NF-κB pathway in chrysophanol-mediated efficacy. Finally, the binding mode of chrysophanol with NKD2 was studied using in silico molecular docking and microscale thermophoresis (MST) assay.
Results: Chrysophanol could significantly improve the kidney dysfunction, alleviate renal pathology, and reverse the elevated levels of renal fibrosis markers such as FN1, collagen ɑI and α-SMA. Furthermore, chrysophanol effectively inhibited TNF-α, IL-6, and IL-1β production, and suppressed NF-κB activation and NKD2 expression. The findings of in vitro study were consistent with those of animal expriment. Using NKD2-overexpressing HK-2 cells, we also demonstrated that overexpression of NKD2 significantly compromised the anti-fibrotic effects of chrysophanol. In addition, molecular docking and MST analysis revealed that NKD2 was a direct target of chrysophanol.
Conclusion: Together, our work demonstrated for the first time that chrysophanol could effectively ameliorate renal fibrosis by inhibiting NKD2/NF-κB pathway. Chrysophanol can potentially prevent CKD by suppressing renal NKD2 expression directly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2022.154381 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran. Electronic address:
In this work, we sought to apprehend quercetin binding affinity and its interaction behavior in complex with human serum albumin (HSA) and calf thymus DNA (ctDNA) through multi spectroscopy and molecular dynamics and also evaluated its effects on colorectal cancer. The binding constants of ctDNA-quercetin and HSA-quercetin complexes at 298 K, which were calculated to be (2.67 ± 0.
View Article and Find Full Text PDFRejuvenation Res
December 2024
Department of Urinary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
As a typical E3 ligase, tripartite motif-containing 65 (TRIM65), is implicated in the modulation of biological processes, such as metastasis, proliferation, and apoptosis. However, the function of TRIM65 in prostate cancer (PCa) and its potential mechanism have not yet been excavated. In this work, we affirmed Tripartite motif-containing protein 65 (TRIM65) as a new oncogene in PCa, which accelerated PCa cell proliferation and impeded cell ferroptosis.
View Article and Find Full Text PDFLab Invest
November 2024
Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. Electronic address:
Genes Dis
January 2025
NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China.
Naked cuticle homolog 2 (NKD2) has been recognized as an antagonist of Wnt/β-catenin signaling and a tumor suppressor. The role of NKD2 in osteoblast and osteoclast differentiation and the mechanism are not fully understood. In this study, we identified the up-regulation of NKD2 during osteoblast and adipocyte differentiation.
View Article and Find Full Text PDFKidney Blood Press Res
December 2024
Guangdong Provincial Autoimmune Disease Precision Medicine Engineering Research Center, Shenzhen Autoimmune Disease Engineering Research Center, Shenzhen Geriatrics Clinical Research Center, Forensic Evidence Laboratory, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China.
Introduction: Interstitial cells are crucial to the development of kidney structure and function, although the mechanism underlying their role in it remains unclear to date. Our previous study identified cell clusters in human fetal kidney tissue, and we further analyzed the interstitial cell cluster within this context.
Methods: We extracted the barcoded cDNA from tissue samples and prepared spatial transcriptome libraries.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!