A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chronic effects of nano and microplastics on reproduction and development of marine copepod Tigriopus japonicus. | LitMetric

Chronic effects of nano and microplastics on reproduction and development of marine copepod Tigriopus japonicus.

Ecotoxicol Environ Saf

Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17, Jegok-gil, Jinju 52834, Republic of Korea; Human and Environmental Toxicology Program, University of Science and Technology, 217, Gajeong-ro, Daejeon 34113, Republic of Korea. Electronic address:

Published: September 2022

This study aimed to examine the impact of chronic (30 days) exposure to polystyrene microplastics (PS-MPs) of different sizes (50 nm and 2 µm) and at different concentrations (0.5 μg/L and 100 mg/L) to marine copepod Tigriopus japonicus. Polystyrene microplastics affected survival rates in size- and concentration-dependent manners. The LCs values of 50 nm and 2 µm PS-MPs were 0.10 mg/L and 3.92 mg/L, respectively. The developmental time was delayed by 50 nm PS-MPs, and Usp expression was downregulated. Reproduction was negatively affected by 2 µm PS-MPs even at environmentally relevant concentrations; however, the expression of Vtg was not altered. The production rates of reactive oxygen species and nitric oxide also increased after exposure to PS-MPs; but this effect was independent of particle size. The expression levels of Cat and Tnf, genes related to oxidative stress and inflammation, respectively, were upregulated by exposure to PS-MPs, independently of particle size. Meanwhile, the level of oxidative stress in T. japonicus was not significantly affected by PS-MPs at environmentally relevant concentrations. This study suggests that nano-sized PS-MPs are not always more toxic than micro-sized PS-MPs, and that oxidative stress is a key factor in determining the toxic effect on T. japonicus at high concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2022.113962DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
ps-mps
9
marine copepod
8
copepod tigriopus
8
tigriopus japonicus
8
polystyrene microplastics
8
50 nm 2 µm
8
2 µm ps-mps
8
ps-mps environmentally
8
environmentally relevant
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!