The purpose of this study was to verify the efficacy of generative contribution mapping (GCM), an explainable deep learning model for images, in classifying the presence or absence of calcifications on mammography. The learning dataset consisted of 303 full-field digital mammography (FFDM) images labeled with microcalcifications obtained from the public INbreast database without extremely dense images. FFDM images were divided into calcification and non-calcification patch images using a sliding window method with 25% overlap. The patch images of the mediolateral oblique (MLO) and craniocaudal (CC) views were divided into a training set of 70%, a validation set of 10%, and a testing set of 20%. The classification performance of GCM classifiers was evaluated and compared with that of EfficientNet classifiers. Visualization maps of GCM highlighted regions of interest more clearly than EfficientNet's gradient-weighted class activation maps. The results showed that GCM classifiers yielded an accuracy of 0.92 (CC), 0.91 (MLO), and an area under the receiver operating characteristic curve of 0.92 (CC), 0.94 (MLO). In conclusion, GCM could accurately classify the presence or absence of calcifications on mammograms and explain intuitively reasonable grounds for their classification with visualization maps highlighting regions of interest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12194-022-00673-3 | DOI Listing |
Nanotechnology
January 2025
Department of Electrical and Computer Engineering, Nazarbayev University, Nazarbayev University, Astana, Kazakhstan, Astana, 010000, KAZAKHSTAN.
Non-equilibrium molecular dynamics (NEMD) simulations reveal the existence of a spontaneous heat current (SHC) in the absence of a temperature gradient and demonstrate ultra-high thermal rectification in asymmetric trapezoid-shaped graphene. These unique properties have potential applications in power generation and thermal circuits, functioning as thermal diodes. Our findings also show the presence of negative and zero thermal conductivity in this system.
View Article and Find Full Text PDFJ Bone Joint Surg Am
January 2025
Northumbria Healthcare NHS Foundation Trust, Northumberland, United Kingdom.
Background: Greater trochanteric pain syndrome (GTPS) is a painful condition that can impair a patient's quality of life. If nonoperative measures fail, progressively more invasive treatment options may be required. This clinical trial aimed to evaluate the effectiveness of ultrasound-guided leukocyte-rich platelet-rich plasma (LR-PRP) injections in the treatment of refractory GTPS caused by bursitis and/or gluteal tendinopathy.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland.
In this article, a neoacetalization-based method for post-SELEX modification of aptamers is introduced. Three modified quinine binding aptamer scaffolds were synthesized by replacing three different nucleosides of the binding site with a (2,3)-4-(methoxyamino)butane-1,2,3-triol residue. These aptamer scaffolds were incubated in different aldehyde mixtures with and without quinine, allowing the reversible formation of -methoxy-1,3-oxazinane (MOANA) nucleoside analogues through dynamic combinatorial chemistry.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, Donostia-San Sebastián 20018, Spain.
A challenging aspect in the synthesis of covalent organic frameworks (COFs) that goes beyond the framework's structure and topology is interpenetration, where two or more independent frameworks are mechanically interlocked with each other. Such interpenetrated or interlocked frameworks are commonly found in three-dimensional (3D) COFs with large pores. However, interlocked two-dimensional (2D) COFs are rarely seen in the literature, as 2D COF layers typically crystallize in stacks that maximize stabilization through π-stacking.
View Article and Find Full Text PDFNano Lett
January 2025
Division of Biomedical Engineering, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa-shi, Saitama 359-8513, Japan.
Nanostructuring surfaces is an emergent strategy to endow materials with abilities to combat pathogenic bacteria. Nevertheless, it remains challenging to create nanospike structures on the curved surfaces of polymer materials, including gauze and other microfibrous medical materials. Additionally, the effects of nanostructured surfaces on bacteria in the presence of proteins and in vivo remain largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!