A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fluoxetine improves bone microarchitecture and mechanical properties in rodents undergoing chronic mild stress - an animal model of depression. | LitMetric

Depression is one of the most prevalent mental disorders associated with reductions in bone mineral density and increased fracture risk. Fluoxetine is a highly prescribed selective serotonin reuptake inhibitor (SSRI) in the treatment of depression and is reported to be a risk factor for fractures. The present study examined the effect of fluoxetine on bone microarchitecture and the mechanical properties under chronic mild stress (CMS), a rodent model of depression. Thirty-one 6-9 week-old rats were allocated to 4 groups: 1) CMS + fluoxetine group (n = 10), 2) fluoxetine-only group (n = 5), 3) CMS + placebo group (n = 10) and 4) control group (no CMS and treatment) (n = 6). After 16 weeks, bone microarchitecture of the distal femur was analyzed by µCT. Mechanical properties were assessed by the three-point bending test, and antidepressant efficacy was determined by sucrose preference and forced swimming tests. Significant correlations were found between volume of sucrose intake and bone volume/tissue volume (BV/TV) (p = 0.019) and elastic absorption energy (p = 0.001) in the fluoxetine only group. The fluoxetine-only group showed significantly higher in the second moment of area in y-direction (p = 0.0298), horizontal outer diameter (mm) (p = 0.0488) and average midshaft thickness (mm) (p = 0.00047) than control group. Comparing with the control group, there was a significant reduction in trabecular number (Tb.N) in the CMS + fluoxetine group (p = 0.026) but not the fluoxetine-only group (p > 0.05). Significant increases in trabecular separation were observed in the metaphysis of CMS + placebo (p = 0.003) and CMS + fluoxetine (p = 0.004) groups when compared to the control group but not in the fluoxetine-only group (p > 0.05). During the three-point bending test, the fluoxetine-only group demonstrated significantly higher structural strength than controls (p = 0.04). Micro computed tomography (µCT) slices showed loss of trabecular bone in the metaphysis region of the CMS + fluoxetine and CMS + placebo groups but not the fluoxetine-only and control groups. In an animal model of depression, the adverse effect on the bone microarchitecture was caused by CMS but not by fluoxetine. Without exposure to CMS, fluoxetine significantly increased the cross-sectional area, trabecular bone area, structural strength and osteoblasts / bone area as compared to control condition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9392792PMC
http://dx.doi.org/10.1038/s41398-022-02083-wDOI Listing

Publication Analysis

Top Keywords

fluoxetine-only group
20
bone microarchitecture
16
control group
16
group
13
mechanical properties
12
model depression
12
bone
9
microarchitecture mechanical
8
chronic mild
8
mild stress
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!