Background: Amyloid plaque deposition and axonal degeneration are early events in AD pathogenesis. Aβ disrupts microtubules in presynaptic dystrophic neurites, resulting in the accumulation of impaired endolysosomal and autophagic organelles transporting β-site amyloid precursor protein cleaving enzyme (BACE1). Consequently, dystrophic neurites generate Aβ42 and significantly contribute to plaque deposition. Farnesyltransferase inhibitors (FTIs) have recently been investigated for repositioning toward the treatment of neurodegenerative disorders and block the action of farnesyltransferase (FTase) to catalyze farnesylation, a post-translational modification that regulates proteins involved in lysosome function and microtubule stability. In postmortem AD brains, FTase and its downstream signaling are upregulated. However, the impact of FTIs on amyloid pathology and dystrophic neurites is unknown.
Methods: We tested the effects of the FTIs LNK-754 and lonafarnib in the 5XFAD mouse model of amyloid pathology.
Results: In 2-month-old 5XFAD mice treated chronically for 3 months, LNK-754 reduced amyloid plaque burden, tau hyperphosphorylation, and attenuated the accumulation of BACE1 and LAMP1 in dystrophic neurites. In 5-month-old 5XFAD mice treated acutely for 3 weeks, LNK-754 reduced dystrophic neurite size and LysoTracker-Green accumulation in the absence of effects on Aβ deposits. Acute treatment with LNK-754 improved memory and learning deficits in hAPP/PS1 amyloid mice. In contrast to LNK-754, lonafarnib treatment was less effective at reducing plaques, tau hyperphosphorylation and dystrophic neurites, which could have resulted from reduced potency against FTase compared to LNK-754. We investigated the effects of FTIs on axonal trafficking of endolysosomal organelles and found that lonafarnib and LNK-754 enhanced retrograde axonal transport in primary neurons, indicating FTIs could support the maturation of axonal late endosomes into lysosomes. Furthermore, FTI treatment increased levels of LAMP1 in mouse primary neurons and in the brains of 5XFAD mice, demonstrating that FTIs stimulated the biogenesis of endolysosomal organelles.
Conclusions: We show new data to suggest that LNK-754 promoted the axonal trafficking and function of endolysosomal compartments, which we hypothesize decreased axonal dystrophy, reduced BACE1 accumulation and inhibited amyloid deposition in 5XFAD mice. Our results agree with previous work identifying FTase as a therapeutic target for treating proteinopathies and could have important therapeutic implications in treating AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9392365 | PMC |
http://dx.doi.org/10.1186/s13024-022-00561-9 | DOI Listing |
Alzheimers Dement
January 2025
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Introduction: Plaques are a hallmark feature of Alzheimer's disease (AD). We found that the loss of mucosal-associated invariant T (MAIT) cells and their antigen-presenting molecule MR1 caused a delay in plaque pathology development in AD mouse models. However, it remains unknown how this axis is impacting dystrophic neurites.
View Article and Find Full Text PDFJ Neurochem
January 2025
Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, USA.
Neuroinflammation plays an important role in the pathological cascade of Alzheimer's disease (AD) along with aggregation of extracellular amyloid-β (Aβ) plaques and intracellular aggregates of tau protein. In animal models of amyloidosis, local immune activation is centered around Aβ plaques, which are usually of uniform morphology, dependent on the transgenic model used. In postmortem human brains a diversity of Aβ plaque morphologies is seen including diffuse plaques (non-neuritic plaques, non-NP), dense-core plaques, cotton-wool plaques, and NP.
View Article and Find Full Text PDFNeuron
November 2024
Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA. Electronic address:
bioRxiv
November 2024
Bioengineering Department, Northeastern University, Boston, MA 02115, USA.
Heliyon
October 2024
Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
Alzheimer's disease (AD) is the most common cause of late-life dementia characterized by progressive neurodegeneration and brain deposition of amyloid-β (Aβ) and phosphorylated tau. The ε2 encoding apolipoprotein E () is a protective allele against AD among the three genotypes ( ε2, ε3, ε4), while is the strongest genetic factor substantially increasing AD risk. APOE regulates brain lipid homeostasis and maintaining synaptic plasticity and neuronal function, where has a superior function compared to and .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!