Fluorene-9-bisphenol (BHPF), which has been used as a substitute for bisphenol A (BPA) in consumer goods and industrial products, can be detected in environmental media and human urine. BHPF has been reported to have endocrine-disrupting effects, whereas deleterious effects on steroidogenesis in H295R cells and underlying mechanisms are still unclear. Here, we investigated effects of BHPF on steroidogenesis using human adrenocortical carcinoma cells (H295R). Cytotoxicity was initially assessed and half-maximal inhibitory concentration (IC) was determined based on proliferation of cells. Responses of four steroid hormones, aldosterone, cortisol, testosterone and 17β-estradiol (E), and ten critical genes, StAR, HMGR, CYP11A1, CYP11B1, CYP11B1, HSD3B2, CYP21, CYP17, 17β-HSD, and CYP19, involved in steroidogenesis after exposure to non-cytotoxic concentrations of BHPF were determined in the presence or absence of 100 μM dbcAMP. Adenylate cyclase (AC) activity, intracellular concentrations of cAMP, PKA activity and amounts of steroidogenic factor-1 (SF-1) gene and expressions of proteins were determined to elucidate underlying mechanisms of effects on steroidogenesis. BHPF was cytotoxic to H295R cells in a dose- and time-dependent manner. Effects on production of hormones results demonstrated that exposure to greater concentrations of BHPF inhibited productions of aldosterone, cortisol, testosterone and E by down-regulation of steroidogenic genes. Inhibition of AC activity, intercellular cAMP content and PKA activity after exposure to BHPF implied that the AC/cAMP/PKA signaling pathway was involved in BHPF-induced suppression of steroidogenesis in H295R cells. Additionally, BHPF inhibited steroidogenesis and expressions of steroidogenic genes via decreasing expression of SF-1 protein, both in basal and dbcAMP-induced treatment. These results contributed to understanding molecular mechanisms of BHPF-induced effects on steroidogenesis and advancing the comprehensive risk assessment of BPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2022.113982 | DOI Listing |
Anal Chim Acta
February 2025
Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
Background: Considering the large diversity of chemicals present in the environment and the need to study their effects (alone or as mixtures), the development of high-throughput in vitro assays in line with the Replacement, Reduction, Refinement (3R) strategy is essential for chemical risk assessments.
Results: We developed a robust analytical workflow based on both low resolution tandem mass spectrometry (MS/MS) and high-resolution mass spectrometry (HRMS) to quantify 13 steroids in NCI-H295R cell culture medium, human plasma and serum. The workflow was validated by screening media from the NCI-H295R cell line exposed in dose-response experiments to 5 endocrine disruptors (EDs) such as bisphenol A, prochloraz, ketoconazole, atrazine and forskolin.
Clin Transl Med
January 2025
Department of Physiology, School of Basic Medicine, Shandong Second Medical University, Weifang, China.
Background: Distant metastasis occurs in the majority of adrenocortical carcinoma (ACC), leading to an extremely poor prognosis. However, the key genes driving ACC metastasis remain unclear.
Methods: Weighted gene co-expression network analysis (WGCNA) and functional enrichment analysis were conducted to identify ACC metastasis-related genes.
bioRxiv
December 2024
Discipline of Pharmacology & Therapeutics, School of Medicine, University of Galway, Galway, Ireland.
Adrenocortical carcinoma (ACC) is a rare cancer with poor prognosis, treated primarily through surgery and chemotherapy. Other treatments like radiation or thermal ablation for metastases have limited success, and recurrence is common. More effective management options are needed.
View Article and Find Full Text PDFEndocrinology
November 2024
Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, H91 V4AY, Ireland.
Adrenocortical carcinoma (ACC) is a rare malignancy of the adrenal cortex that is associated with a poor prognosis. Developing effective treatment options for ACC is challenging owing to the current lack of representative preclinical models. This study addressed this limitation by developing and characterizing 3-dimensional (3D) cell cultures incorporating the ACC cell lines, MUC-1, HAC15, and H295R in a type I collagen matrix.
View Article and Find Full Text PDFInt J Cancer
March 2025
Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!