In previous studies, several isoindolin-1-one analogs that exhibited significant anti-tobacco mosaic virus (anti-TMV) activities were isolated from Nicotiana tabacum. Since gene-editing mutants provide a new sample for the discovery of active metabolites, we focused on the stems of YN-18-23 (a mutant N. tabacum for gene editing with the alkaloid metabolic pathway cultivated by Yunnan Tobacco Company), which led to the isolation of four new (1-4) and four known (5-8) isoindolin-1-ones. To the best of our knowledge, nicindole C (3) is the first subclass of isoindolin-1-one bearing a pentacyclic ketone, while nicindole D (4) is the first example of isoindolin-1-one bearing a methyl-pyridin-2-(1H)-one moiety. Compounds 1-4 were tested for their anti-TMV activities, and the results revealed that compounds 1, 3, and 4 exhibited high anti-TMV activities at concentrations of 20 μM with inhibition rates of 48.6, 42.8, and 71.5%, respectively. These rates are higher than the inhibition rate of the positive control (33.2%). The mechanistic study of compound 4, which had the highest anti-TMV activity revealed that increased potentiation of defense-related enzyme activities and downregulation of expression of the NtHsp70 protein may induce resistance in tobacco against the viral pathogen TMV. Molecular docking studies also revealed that the isoindolin-1-one substructure is fundamental for anti-TMV activity. The methyl-pyridin-2-(1H)-one moiety in compound 4 and the 2-oxopropyl groups in compounds 1 and 3 at the N-2 position may increase inhibitory activities. This study of the structure-activity relationship is helpful for finding new anti-TMV activity inhibitors. To study whether the isoindolin-1-ones have broader antiviral activities, compounds 1-4 were also tested for their anti-rotavirus activities. Compound 4 exhibited high anti-rotavirus activity with a therapeutic index (TI) value of 20.7. This TI value is close to that of the positive control (20.2).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12272-022-01399-x | DOI Listing |
J Agric Food Chem
January 2025
Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China.
Taking the natural product cerbinal as the lead compound, 30 novel 5-aryl-cyclopenta[]pyridine derivatives were designed and synthesized based on the previous bioactivity studies of the cyclopenta[]pyridines. The modification of the position-5 of compound was achieved by amination, bromination, and cross coupling using cerbinal as the raw material. The results of the bioactivity tests demonstrated that partial compounds exhibited superior activity against plant viruses compared to compound .
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
Fitoterapia
December 2024
State Key Laboratory of Green Pesticide, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang 550025, China. Electronic address:
Pest Manag Sci
January 2025
Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, China.
Background: The invasion of viruses and fungi can cause pathological changes in the normal growth of plants and is an important factor in causing plant infectious diseases. These pathogenic microorganisms can also secrete toxic metabolites, affecting crop quality and posing a threat to human health. In this work, we selected the natural product rutaecarpine as the lead compound to achieve the total synthesis and structural derivation.
View Article and Find Full Text PDFJ Agric Food Chem
October 2024
State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
-pregnane C steroids exhibit high antiviral activity against the tobacco mosaic virus (TMV). However, the structural modification of -pregnane C steroids and the structure-activity relationship (SAR) of the modified compounds remain unevaluated. Hence, the present study investigated how variations in the original skeletons of natural -pregnane C steroids affect their antiviral activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!