Development of a natural antifungal formulation for grated cheese and a microencapsulation approach using whey protein isolate and maltodextrin blend.

J Food Sci

INRS, Armand-Frappier Health Biotechnology Research Centre, Research Laboratories in Sciences, Applied to Food (RESALA), MAPAQ Research Chair in food safety and quality, Canadian Irradiation Centre (CIC), Institute of Nutrition and Functional Foods (INAF), Laval, Canada.

Published: September 2022

The antifungal activity of natural antimicrobials such as essential oils (EOs), citrus extracts, and other natural derivatives was evaluated against 10 fungal strains using minimum inhibitory concentration (MIC) analysis. Compounds having the highest inhibitory activity at the lowest concentrations were subsequently selected to evaluate the possible synergistic interactions by checkerboard method (FIC). The results showed that citrus extract A (CEA) and EOs rich in cinnamaldehyde had the highest inhibitory capacity against evaluated strains (Aspergillus niger, Aspergillus versicolor, Aureobasidium pullulans, Eurotium rubrum, Paecilomyces spp., Penicillium chrysogenum, Penicillium citrinum, Penicillium commune, Penicillium crustosum, and Penicillium roqueforti). The stability of the antifungal mixture was then optimized using lecithin and sucrose monopalmitate (SMP) as surfactants. Stability test showed that lecithin:SMP at HLB 10 maintains emulsion stability for 15 days of storage at 4°C. Encapsulation process for the loaded emulsion was optimized using whey protein isolate (WPI) and maltodextrin (MD) blend with ratios WPI:MD (1:2) and WPI:MD (1:3). The results showed that WPI:MD (1:3) led to a higher physicochemical stability (-40.5 mV), encapsulation efficiency (91%), and antifungal activity (315 ppm). Microencapsulation maintained the available active compounds content more prolonged with an average interval of 7 days compared to the nonencapsulated formulations during storage at 4°C.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1750-3841.16273DOI Listing

Publication Analysis

Top Keywords

whey protein
8
protein isolate
8
maltodextrin blend
8
antifungal activity
8
highest inhibitory
8
storage 4°c
8
wpimd wpimd
8
penicillium
5
development natural
4
antifungal
4

Similar Publications

The Novel Effect and Potential Mechanism of Lactoferrin on Organ Fibrosis Prevention.

Nutrients

January 2025

Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing 100048, China.

Organ fibrosis is gradually becoming a human health and safety problem, and various organs of the body are likely to develop fibrosis. The ultimate pathological feature of numerous chronic diseases is fibrosis, and few interventions are currently available to specifically target the pathogenesis of fibrosis. The medical detection of organ fibrosis has gradually matured.

View Article and Find Full Text PDF

Electrospinning is a versatile technique for obtaining nano/micro fibers which are able to significantly change the active properties of composite materials and bring in new dimensions to agri-food applications. Composite bio-based packaging materials obtained from whey proteins, functionalized with thyme essential oil (TEO) and reinforced by electrospun polylactic acid (PLA) fibers, represent a promising solution for developing new active food packaging using environmentally friendly materials. The aim of this study is to obtain and characterize one-side-active composite films covered with a PLA fiber mat: (i) WF/G1, WF/G2, and WF/G3 resulting from electrospinning with one needle at different electrospinning times of 90, 150, and 210 min, respectively, and (ii) WF/G4 obtained with two face-to-face needles after 210 min of electrospinning.

View Article and Find Full Text PDF

Effect of Fortification with High-Milk-Protein Preparations on Yogurt Quality.

Foods

January 2025

Department of Dairy Science and Quality Management, Faculty of Food Science, University of Warmia and Mazury, Oczapowskiego 7, 10-719 Olsztyn, Poland.

Protein-enriched yogurts have become increasingly popular among consumers seeking to boost their daily protein intake. The incorporation of milk proteins and protein preparations in yogurt production not only enhances nutritional value but also improves texture, viscosity, and overall sensory properties-key factors that influence consumer acceptance. The main objective of this study was to evaluate the influence of casein and whey protein preparations on the physicochemical properties, viability of lactic acid bacteria, and sensory attributes of yogurts.

View Article and Find Full Text PDF

Goat milk yogurt infused with hemp extract (HE) is a novel dairy product; however, the unpleasant flavors from hemp terpenes and goat milk may impact its acceptance and popularity. This study aimed to investigate the effect of polymerized whey protein (PWP) on mitigating the hempy flavor of HE-infused goat milk yogurt and its impact on the physicochemical properties, microstructure, and probiotic survivability. Goat milk yogurt samples were infused with either nothing (plain flavor), HE, HE plus whey protein isolate, or HE plus PWP.

View Article and Find Full Text PDF

The flavor of dairy products crucially affects consumer purchase preference. Although the flavor and sensory perception of milk can be influenced by heat treatment during processing, the exact mechanism remains unclear. Therefore, this study analyzed the whey protein content and structural changes of milk heated at different time and temperature combinations and evaluated the flavor compounds and sensory characteristics of milk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!