This retrospective observational study compared severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA load in nasopharyngeal specimens (NPs) from patients with breakthrough coronavirus disease 2019 (COVID-19) caused by the Omicron BA.1 or BA.2 sublineages. The convenience sample was composed of 277 outpatients (176 female/112 male; median age, 48 years; range, 12-97) with breakthrough COVID-19 (n = 130 due to BA.1 and n = 147 due to BA.2). All participants had completed a full vaccination schedule and 56% had received a booster vaccine dose at the time of COVID-19 breakthrough microbiological diagnosis. NPs were collected within 7 days (median 2 days) after symptom onset. The TaqPath COVID-19 Combo Kit (Thermo Fisher Scientific) was used to estimate viral loads in NPs. Overall, viral RNA loads in NPs were comparable (p = 0.31) for BA.1 (median, 7.1 log copies/ml; range, 2.7-10.6) and BA.2 (median, 7.5 log copies/ml; range, 2.7-10.6), yet peak viral load appeared to be reached sooner for BA.2 than for BA.1 (Day 1 vs. Days 3-5; p = 0.002). Time elapsed since last vaccine dose had no significant impact on SARS-CoV-2 RNA loads in the upper respiratory tract (URT) for either BA.1 or BA.2. The data presented do not support that the transmissibility advantage of BA.2 over BA.1 is related to generation of higher viral loads in the URT early after infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537928 | PMC |
http://dx.doi.org/10.1002/jmv.28079 | DOI Listing |
J Microbiol Immunol Infect
January 2025
Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan. Electronic address:
Background: COVID-19 mRNA vaccines have demonstrated 95 % efficacy in the general population. However, their immunogenicity in adolescents with Type 1 Diabetes (T1D), who exhibit weaken immune responses, remains insufficiently explored.
Methods: Longitudinal analysis of innate immune responses following PRR-agonists and BNT162b2 vaccine stimulations, along with S-specific antibody responses, memory T cell recall responses, and RNA-sequencing were assessed in eight T1D adolescents and 16 healthy controls at six different timepoints.
Sci Total Environ
January 2025
Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
International mass gathering events, such as the Olympic and Paralympic Games, face the risk of cross-border transmission of infectious diseases. We previously reported that wastewater-based epidemiology (WBE), which has attracted attention as a COVID-19 surveillance tool, was implemented in the Tokyo 2020 Olympic and Paralympic Village to gain a comprehensive understanding of COVID-19 incidence in the village. In the present study, we explored the quantitative association of wastewater viral load and clinically confirmed cases in various areas of the village.
View Article and Find Full Text PDFUnlabelled: Eastern equine encephalitis virus (EEEV) is an arthropod-borne, positive-sense RNA alphavirus posing a substantial threat to public health. Unlike similar viruses such as SARS-CoV-2, EEEV replicates efficiently in neurons, producing progeny viral particles as soon as 3-4 hours post-infection. EEEV infection, which can cause severe encephalitis with a human mortality rate surpassing 30%, has no licensed, targeted therapies, leaving patients to rely on supportive care.
View Article and Find Full Text PDF2'- -ribose methylation of the first transcribed base (adenine or A in SARS-CoV-2) of viral RNA mimics the host RNAs and subverts the innate immune response. How nsp16, with its obligate partner nsp10, assembles on the 5'-end of SARS-CoV-2 mRNA to methylate the A has not been fully understood. We present a ∼ 2.
View Article and Find Full Text PDFCells must limit RNA-RNA interactions to avoid irreversible RNA entanglement. Cells may prevent deleterious RNA-RNA interactions by genome organization to avoid complementarity however, RNA viruses generate long, perfectly complementary antisense RNA during replication. How do viral RNAs avoid irreversible entanglement? One possibility is RNA sequestration into biomolecular condensates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!