Human mesenchymal stem cells (MSCs) are primary multipotent cells capable of differentiating into osteocytes, chondrocytes, and adipocytes when stimulated under appropriate conditions. The role of MSCs in tissue homeostasis, aging-related diseases, and cellular therapy is clinically suggested. As aging is a universal problem that has large socioeconomic effects, an improved understanding of the concepts of aging can direct public policies that reduce its adverse impacts on the healthcare system and humanity. Several studies of aging have been carried out over several years to understand the phenomenon and different factors affecting human aging. A reduced ability of adult stem cell populations to reproduce and regenerate is one of the main contributors to the human aging process. In this context, MSCs senescence is a major challenge in front of cellular therapy advancement. Many factors, ranging from genetic and metabolic pathways to extrinsic factors through various cellular signaling pathways, are involved in regulating the mechanism of MSC senescence. To better understand and reverse cellular senescence, this review highlights the underlying mechanisms and signs of MSC cellular senescence, and discusses the strategies to combat aging and cellular senescence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388978 | PMC |
http://dx.doi.org/10.1186/s11658-022-00366-0 | DOI Listing |
Background: Plant senescence is a genetically controlled process that results in the programmed death of plant cells, organs, or the entire plant. This process is essential for nutrient recycling and supports the production of plant offspring. Environmental stresses such as drought and heat can hasten senescence, reducing photosynthetic efficiency and significantly affecting crop quality and yield.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Introduction: Glaucoma, a leading cause of irreversible blindness, is characterized by optic neuropathy and retinopathy, with primary open-angle glaucoma (POAG) being the most prevalent form. The primary pathogenic mechanism of POAG involves elevated intraocular pressure caused by chronic fibrosis of the trabecular meshwork (TM). Autophagy, a critical process for maintaining cellular homeostasis, has been implicated in fibrosis across various organs.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
January 2025
Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-Gu, Jeonju, Jeonbuk 54896, South Korea. Electronic address:
Senescence significantly contributes to aging in various tissues, influenced by factors such as lysosomal alkalinization, which disrupts autophagic flux and accumulates toxic substances. This disruption leads to oxidative stress, increased lysosomal permeability, cellular senescence, and apoptosis. Similar to mammalian lysosomes, S.
View Article and Find Full Text PDFProg Retin Eye Res
January 2025
Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China. Electronic address:
RNA methylation is a pivotal epigenetic modification that adjusts various aspects of RNA biology, including nuclear transport, stability, and the efficiency of translation for specific RNA candidates. The methylation of RNA involves the addition of methyl groups to specific bases and can occur at different sites, resulting in distinct forms, such as N6-methyladenosine (mA), N1-methyladenosine (mA), 5-methylcytosine (mC), and 7-methylguanosine (mG). Maintaining an optimal equilibrium of RNA methylation is crucial for fundamental cellular activities such as cell survival, proliferation, and migration.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
Renal fibrosis is a common pathological process in various chronic kidney diseases. The accumulation of senescent renal tubular epithelial cells (TECs) in renal tissues plays an important role in the development of renal fibrosis. Eliminating senescent TECs has been proven to effectively reduce renal fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!