Distinguishing cause from effect is a scientific challenge resisting solutions from mathematics, statistics, information theory and computer science. Compression-Complexity Causality (CCC) is a recently proposed interventional measure of causality, inspired by Wiener-Granger's idea. It estimates causality based on change in dynamical compression-complexity (or compressibility) of the effect variable, given the cause variable. CCC works with minimal assumptions on given data and is robust to irregular-sampling, missing-data and finite-length effects. However, it only works for one-dimensional time series. We propose an ordinal pattern symbolization scheme to encode multidimensional patterns into one-dimensional symbolic sequences, and thus introduce the Permutation CCC (PCCC). We demonstrate that PCCC retains all advantages of the original CCC and can be applied to data from multidimensional systems with potentially unobserved variables which can be reconstructed using the embedding theorem. PCCC is tested on numerical simulations and applied to paleoclimate data characterized by irregular and uncertain sampling and limited numbers of samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391387PMC
http://dx.doi.org/10.1038/s41598-022-18288-4DOI Listing

Publication Analysis

Top Keywords

time series
8
compression complexity
4
complexity ordinal
4
ordinal patterns
4
patterns robust
4
robust causal
4
causal inference
4
inference irregularly
4
irregularly sampled
4
sampled time
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!