Targeting protein conformations with small molecules to control protein complexes.

Trends Biochem Sci

Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA. Electronic address:

Published: December 2022

Dynamic protein complexes function in all cellular processes, from signaling to transcription, using distinct conformations that regulate their activity. Conformational switching of proteins can turn on or off their activity through protein-protein interactions, catalytic function, cellular localization, or membrane interaction. Recent advances in structural, computational, and chemical methodologies have enabled the discovery of small-molecule activators and inhibitors of conformationally dynamic proteins by using a more rational design than a serendipitous screening approach. Here, we discuss such recent examples, focusing on the mechanism of protein conformational switching and its regulation by small molecules. We emphasize the rational approaches to control protein oligomerization with small molecules that offer exciting opportunities for investigation of novel biological mechanisms and drug discovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9669135PMC
http://dx.doi.org/10.1016/j.tibs.2022.07.002DOI Listing

Publication Analysis

Top Keywords

small molecules
12
control protein
8
protein complexes
8
function cellular
8
conformational switching
8
targeting protein
4
protein conformations
4
conformations small
4
molecules control
4
protein
4

Similar Publications

Pancreatic adenocarcinoma (PAAD) is a highly malignant tumor in the digestive system, with an increasing incidence and mortality rate globally. Recent genetic studies have revealed that the abnormal expression and functional dysregulation of various genes are involved in the occurrence and progression of pancreatic cancer. NIPA-like proteins (NIPAs) are expressed in a variety of cancer types, yet the role of NIPAL1 in cancer remains unclear.

View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS) is a prevalent endocrine and metabolic disorder affecting women of reproductive age. Oxidative stress (OS) is suggested to play a significant role in the development of PCOS. Using antioxidants to reduce OS and maintain a healthy balance in the body could be a novel treatment approach for PCOS.

View Article and Find Full Text PDF

Screening a 681-membered yeast collection for the secretion of proteins with antifungal activity.

N Biotechnol

January 2025

Department for Molecular Microbiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands; Department of Bioengineering, Imperial College London, South Kensington Campus, SSW7 2AZ, London, UK. Electronic address:

Fungal pathogens pose a threat to human health and food security. Few antifungals are available and resistance to all has been reported. Novel strategies to control plant and human pathogens as well as food spoilers are urgently required.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by protein aggregates mostly consisting of misfolded alpha-synuclein (αSyn). Progressive degeneration of midbrain dopaminergic neurons (mDANs) and nigrostriatal projections results in severe motor symptoms. While the preferential loss of mDANs has not been fully understood yet, the cell type-specific vulnerability has been linked to a unique intracellular milieu, influenced by dopamine metabolism, high demand for mitochondrial activity, and increased level of oxidative stress (OS).

View Article and Find Full Text PDF

Understanding a small molecule's mode of action (MoA) is essential to guide the selection, optimization and clinical development of lead compounds. In this study, we used high-throughput non-targeted metabolomics to profile changes in 2,269 putative metabolites induced by 1,520 drugs in A549 lung cancer cells. Although only 26% of the drugs inhibited cell growth, 86% caused intracellular metabolic changes, which were largely conserved in two additional cancer cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!