The transportation processes during aquatic systems regulate the ultimate chemistry of dissolved organic matter (DOM), and in recent years, climate changes and human activities have altered the hydrological patterns of many rivers and lakes, which generated some severe issues, such as hydrological isolation. However, how hydrological isolation affects variations of DOM chemistry in large lake systems is still poorly understood. Here, optical properties and molecular compositions of DOM samples derived from a large river-connected lake (Poyang Lake, China) and its nearby seasonal sub-lakes (formed by hydrological isolation) were characterized using Fourier transform ion cyclotron resonance mass spectrometry (FT ICR MS) and ultraviolet-visible (UV-Vis) spectroscopy. The results revealed more abundance of organic matter in sub-lakes than that in the main lake according to high dissolved organic carbon (DOC) concentrations and absorption coefficients (a and a). Large proportions of CHOS formulas were identified by FT ICR MS in sub-lakes DOM, which were produced through Kraft reactions (sulfide/bisulfide + lignin CHO → CHOS) in the interface of sediment/water, and greatly contributed to aliphatic compounds. In addition, obvious variations of compounds (such as polyphenols, highly unsaturated and aliphatic compounds) and lability of DOM were observed between sub-lakes and main lakes, which were mainly caused by the different degradation pathways of DOM (photodegradation in sub-lakes while biodegradation in the main lake). Our results demonstrated that hydrological isolation has significant impacts on DOM chemistry, and provides an improved understanding of the DOM biogeochemistry process in Poyang Lake and supports the management of the large lake systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.158047 | DOI Listing |
Microb Ecol
January 2025
IRD, UMR ENTROPIE, 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, La Réunion, France.
The marine microbiome arouses an increasing interest, aimed at better understanding coral reef biodiversity, coral resilience, and identifying bioindicators of ecosystem health. The present study is a microbiome mining of three environmentally contrasted sites along the Hermitage fringing reef of La Réunion Island (Western Indian Ocean). This mining aims to identify bioindicators of reef health to assist managers in preserving the fringing reefs of La Réunion.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
The construction of artificial reefs (ARs) is an effective way to restore habitats and increase and breed fishery resources in marine ranches. However, studies on the impacts of ARs on the structure, function, and assembly patterns of the bacterial community (BC), which is important in biogeochemical cycles, are lacking. The compositions, diversities, assembly patterns, predicted functions, and key environmental factors of the attached and free-living microbial communities in five-year ARs (O-ARs) and one-year ARs (N-ARs) in Fangchenggang, China, were analyzed via 16S rRNA gene sequencing.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
January 2025
Department of Agricultural Sciences, Clemson University, Clemson, South Carolina, USA.
Bacterial source characterization and allocation are imperative to watershed planning and identifying best management practices. The Spatially Explicit Load Enrichment Calculation Tool (SELECT) has been extensively utilized in watershed protection plans to evaluate the potential bacteria loads and sources in impaired watersheds. However, collecting data, compiling inputs, and spatially mapping sources can be arduous, time-intensive, expensive, and iterative until potential bacteria loads are appropriately allocated to sources based on stakeholder recommendations.
View Article and Find Full Text PDFMicrobiol Resour Announc
December 2024
Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, USA.
We present the genomes of nine cultured microbes isolated from two freshwater sites in Wellesley, MA. The dataset is useful for exploring genomic diversity among freshwater taxa, including , , , and .
View Article and Find Full Text PDFJ Environ Manage
January 2025
Research Institute of Water and Environmental Engineering, Universitat Politècnica de València, Valencia, Spain.
Nature based solutions (NbS) for flood regulation (e.g., forest restoration) need to be informed by the analysis of climate change and land-use/cover change (LUCC) effects on floods, but these effects are still poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!