Antibiotic pollutants in water bodies, was studied to remove using an oxidized, nitrogen-doped, and FeO and NiFe-LDH decorated MWCNT (magnetic NiFe-LDH/N-MWCNTs) nanocomposite (NC). The novel, engineered NC was characterized by different techniques of SEM, XRD, TEM, EDX, and XPS and then examined under different main effective parameters of NC dose, levofloxacin (LVX) concentration, pH, time, and temprature. The experimentally obtained data then evaluated using the modeling approaches of RSM, GRNN, and ANFIS. The as prepared adsorbent showed an excellent adsorption performance (removal efficiency = 95.28% and adsorption capacity = 344.83-454.55 mg/g) under the respective values of the mentioned parameters of 0.152 g, 23.01 mg/L, 12.00 min, and 37.5 °C, respectively. The comparison of the models showed that although all of them accurately predicted the removal efficiency, ANFIS presented the best capability with R, RMSE, MSE, MAE, as well as AAD of 0.9998, 0.0082, -0.0004, 0.0069, 0.1322, respectively. The adsorption by the NC followed Freundlich isotherm (R = 0.9993) and PSO kinetic (>0.998) models, confirming a heterogenous chemisorption process. The thermodynamic parameters showed an endothermic and spontaneous nature for LVX removal by magnetic NiFe-LDH/N-MWCNTs NC. A high-performance efficiency, appropriate reusability (five times without loss of efficiency), as well as easy separation due to magnetic properties, makes the NC to a promising option in removing LVX from water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2022.113967 | DOI Listing |
Environ Res
December 2022
Department of Chemistry, Omidi yeh Branch, Islamic Azad University, Omidiyeh, 6373193719, Iran.
Antibiotic pollutants in water bodies, was studied to remove using an oxidized, nitrogen-doped, and FeO and NiFe-LDH decorated MWCNT (magnetic NiFe-LDH/N-MWCNTs) nanocomposite (NC). The novel, engineered NC was characterized by different techniques of SEM, XRD, TEM, EDX, and XPS and then examined under different main effective parameters of NC dose, levofloxacin (LVX) concentration, pH, time, and temprature. The experimentally obtained data then evaluated using the modeling approaches of RSM, GRNN, and ANFIS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!