Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Enhancer of zeste homolog 2 (EZH2) was recently found to play an important role in cardiovascular disease. However, the role of EZH2 in vascular remodeling induced by mechanical stretch is poorly understood. The aim of the present work was to investigate the role of EZH2 in regulating smooth muscle cell function through mechanical stretch assays and to explore the underlying mechanisms.
Methods: WT C57BL/6 J mice underwent sham surgery or abdominal aortic constriction. The level of EZH2 expression was determined by Western blotting and immunohistochemical staining. We demonstrated the thickness of vascular remodeling by HE staining. JASPAR was used to predict transcription factors that could affect EZH2. Chromatin immunoprecipitation was used to substantiate the DNAprotein interactions. Promoter luciferase assays were performed to demonstrate the activity of the transcription factors.
Results: We found that in vivo, AAC significantly reduced EZH2 protein levels in the thoracic aorta. Smooth muscle-specific overexpression of EZH2 was sufficient to attenuate the AAC-induced reduction in trimethylation of Lys-27 in histone 3 and thickening of the arterial media. Administration of GSK-J4 (an inhibitor of H3K27me3 demethylase) induced the same effects. In addition, we found that mechanical stretch regulated the expression of EZH2 through the Yes-associated protein (YAP)- transcriptional factor TEA domain 1 (TEAD) pathway. TEAD1 bound directly to the promoter of EZH2, and blocking the YAP-TEAD1 interaction inhibited EZH2 downregulation due to mechanical stretch.
Conclusion: This study reveals that mechanical stretch downregulates EZH2 through the YAP-TEAD1 pathway, thereby aggravating smooth muscle cell apoptosis and vascular remodeling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biocel.2022.106278 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!