Hydrogels with fascinating adhesion have been demonstrated great potential in various applications. However, most hydrogels lose their adhesion in wet or underwater environments due to the influence of interfacial water. Inspired by mussel, an underwater adhesive hydrogel was facilely fabricated by introducing electrostatic interactions, which consisted of poly (acrylic acid) (PAA), quaternized xylan (QAX) and tannic acid (TA). In this hydrogel, -COO from PAA, -N(CH) from QAX and catechol group from TA resembled amino acids with negative and positive charges and 3,4-dihydroxyphenylalanine units in mussel, which endowed the hydrogels with great underwater adhesion through multiple interactions. Notably, acrylic acid (AA) played a key role in the dispersion of the system. QAX, a biomass derived from plants with excellent properties, worked with PAA to construct hydrogel networks. The resultant hydrogels exhibited excellent mechanical properties including remarkable stretchability (>4000 %) and compressibility. Moreover, the hydrogels had superior UV-blocking (~99.96 %), and showed good adhesion both in air and underwater. The hydrogels can be exploited as a wearable sensor to monitor human motions and even subtle motions, which have the potential to be explored in human health monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.08.077 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!