Modelling the bioconcentration of Zn from commercial sunscreens in the marine bivalve Ruditapes philippinarum.

Chemosphere

Green Engineering & Resources Research Group (GER), Departamento de Química e Ingeniería de Procesos y Recursos, ETSIIT, Universidad de Cantabria, Avda. de Los Castros 46, 39005, Santander, Cantabria, Spain. Electronic address:

Published: November 2022

AI Article Synopsis

  • Sunscreens containing ZnO can harm marine environments by releasing zinc into seawater and causing bioaccumulation in organisms like clams.
  • A mathematical model was developed to analyze the bioaccumulation of zinc in the clams, using different concentrations of sunscreen in experiments without and with clams.
  • The findings showed that lower concentrations of sunscreen led to slower uptake rates of zinc in clams, while higher concentrations increased the rate of zinc release back into the seawater, indicating a complex interaction between zinc, sunscreen, and marine life.

Article Abstract

Sunscreens contain ZnO particles used as a UV filter cause adverse effects in the marine environment through the release of this metal into seawater and its bioaccumulation in organisms. A mathematical model using sunscreen colloidal residues, seawater and R. philippinarum clams as differentiated compartments, is proposed in order to interpret both the kinetic pattern and the bioaccumulation of Zn in clams. Two kinetic laboratory experiments were conducted, both with and without clams exposed to sunscreen concentrations from 0 to 200 mg L. Both the lowest value of uptake rate coefficient obtained when 5 mg L of sunscreen is added (0.00688 L g d) and the highest obtained at sunscreen addition of 100 mg L (0.0670 L g d), predict a lower bioavailability of Zn in a complex medium such as the seawater-sunscreen mixtures, in comparison to those studied in the literature. The efflux rate coefficient from clams to seawater increased from 0 to 0.162 d with the sunscreen concentrations. The estimated value of the inlet rate coefficient at all studied concentrations indicates that there is a negligible colloidal Zn uptake rate by clams, probably due to the great stability of the organic colloidal residue. An equilibrium shift to higher values of Zn in water is predicted due to the bioconcentration of Zn in clams. The kinetic model proposed with no constant Zn (aq) concentrations may contribute to a more realistic prediction of the bioaccumulation of Zn from sunscreens in clams.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.136043DOI Listing

Publication Analysis

Top Keywords

rate coefficient
12
clams kinetic
8
sunscreen concentrations
8
uptake rate
8
clams
7
sunscreen
5
modelling bioconcentration
4
bioconcentration commercial
4
commercial sunscreens
4
sunscreens marine
4

Similar Publications

Biokinetic models can optimise pollutant degradation and enhance microbial growth processes, aiding to protect ecosystem protection. Traditional biokinetic approaches (such as Monod, Haldane, etc.) can be challenging, as they require detailed knowledge of the organism's metabolism and the ability to solve numerous kinetic differential equations based on the principles of micro, molecular biology and biochemistry (first engineering principles) which can lead to discrepancies between predicted and actual degradation rates.

View Article and Find Full Text PDF

Prediction of rain garden runoff control effects based on multiple machine learning techniques.

Environ Technol

January 2025

Shaanxi Huashan Road and Bridge Group Co., Ltd., Xi'an, People's Republic of China.

Due to the rapid development of urbanisation, cities frequently experience waterlogging during rainfall. Rain gardens are widely used in new urban construction because they effectively control surface runoff from rainwater, thereby reducing waterlogging. The runoff control effectiveness of rain gardens is influenced by multiple factors.

View Article and Find Full Text PDF

Purpose: The study aimed to identify and assess the methodological quality of essential clinical guidelines for the management of laryngitis and pharyngitis.

Methods: A systematic search of clinical guidelines for the management of laryngitis and pharyngitis was performed in three databases. Methodological quality was assessed according to AGREE II, in which each item in its domains was scored by four independent evaluators.

View Article and Find Full Text PDF

This study aimed to evaluate the concentrations of sulfur dioxide (SO2) and nitrogen oxides (NOX) around the Qom (a province in Iran) combined cycle power plant in relation to seasonal variations and fuel type from December 2014 to May 2015. Passive sampling was used in three monitoring sites around the power plant to assess noncarcinogenic health risks associated with exposure to SO2 and NOX. Results showed the higher concentrations of NOX and SO2 in winter than in spring.

View Article and Find Full Text PDF

Electronically Nonadiabatic Quenching of Excited States of O by Collisions with O Atoms.

J Phys Chem A

January 2025

Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States.

The kinetics of electronically inelastic quenching of O(Δ) and O(Σ) by collisions with O(P) have been investigated using mixed quantum-classical trajectories governed by adiabatic potential energy surfaces and state couplings generated from a recently developed diabatic potential energy matrix (DPEM) for the 14 lowest-energy A' states of O. Using the coherent switching with decay of mixing (CSDM) method, dynamics calculations were performed both with 14 coupled electronic states and with 8 coupled electronical states, and similar results were obtained. The calculated thermal quenching rate coefficients are generally small, but they increase with temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!