Bone defects resulting from trauma, bone tumors, infections and skeletal abnormalities are a common osteoporotic condition with respect to clinical treatment. Of the known bone morphogenetic proteins (BMPs), BMP9 has the strongest osteogenic differentiation potential, which could be beneficial in the construction of tissue-engineered bone. Silent mating type information regulator 2 homolog-1 (SIRT1) is a highly conserved nicotinamide adenine dinucleotide-dependent deacetylase that deacetylates and modulates histone or non-histone substrates. However, the role of SIRT1 in BMP9-induced osteogenic differentiation of stem cells has not been studied. Furthermore, it is unclear whether SIRT1 interacts with the BMP/Smad and BMP/MAPK pathways in stem cells. We found that SIRT1 expression decreased gradually in a time-dependent manner during BMP9-induced osteogenic differentiation of MSCs. Interactions between SIRT1 and Smad7 promoted degradation of Smad7 and increased Smad1/5/8 phosphorylation. SRT2104, an activator of SIRT, enhanced the expression of osteogenic- and angiogenic-related proteins in BMP9-induced MSCs. In addition, we found that activation of the BMP/MAPK pathway led to osteogenic and angiogenic differentiation of MSCs. Our study demonstrated that SIRT1 expression decreased during BMP9-induced differentiation. The SIRT1 activator SRT2104 promoted BMP9-induced osteogenic and angiogenic differentiation of MSCs through the BMP/Smad and BMP/MAPK signaling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mad.2022.111724 | DOI Listing |
Animal Model Exp Med
December 2024
Laboratory of Animal Center, Chongqing Medical University, Chongqing, China.
Background: A stable and standardized source of mesenchymal stem cells is a prerequisite for bone repair tissue engineering research and application. We aimed to establish a stable cell line of bone marrow mesenchymal stem cells from New Zealand rabbits and explore their osteogenic differentiation capacity.
Methods: Primary rabbit bone marrow mesenchymal stem cells (RBMSCs) were isolated and immortalized via retroviral expression of SV40 Large T antigen (LTA).
Aging (Albany NY)
September 2024
Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China.
Bone morphogenetic protein 9 (BMP9) functions as a potent inducer of osteogenic differentiation in mesenchymal stem cells (MSCs), holding promise for bone tissue engineering. However, BMP9 also concurrently triggers lipogenic differentiation in MSCs, potentially compromising its osteogenic potential. In this study, we explored the role of DNA damage inducible transcript 3 (DDIT3) in regulating the balance between BMP9-induced osteogenic and lipogenic differentiation in MSCs.
View Article and Find Full Text PDFInt Endod J
November 2024
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Aim: The regenerative capacity of dental pulp relies on the odonto/osteogenic differentiation of dental pulp cells (DPCs), but dynamic microenvironmental changes hinder the process. Bone morphogenetic protein 9 (BMP9) promotes differentiation of DPCs towards an odonto/osteogenic lineage, forming dentinal-like tissue. However, the molecular mechanism underlying its action remains unclear.
View Article and Find Full Text PDFAging (Albany NY)
May 2024
Department of Orthopaedics, The first affiliated hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.
BMP9 has demonstrated significant osteogenic potential. In this study, we investigated the effect of Leptin on BMP9-induced osteogenic differentiation. Firstly, we found Leptin was decreased during BMP9-induced osteogenic differentiation and serum Leptin concentrations were increased in the ovariectomized (OVX) rats.
View Article and Find Full Text PDFShanghai Kou Qiang Yi Xue
December 2023
Department of Stomatology, The Third People's Hospital of Pingxiang. Pingxiang 337000, China. E-mail:
Purpose: To explore how bone morphogenetic protein 9(BMP9) promotes the osteogenic differentiation of periodontal ligament stem cells(PDLSCs) via ERK5/KLF4 signaling pathway under an inflammatory environment.
Methods: Recombinant adenovirus to overexpress BMP9 in PDLSCs stimulated with TNF-α was used and the expression level of osteogenic-related genes and proteins in BMP9-treated cells was examined using RT-PCR and Western blot. Then, KLF4 was overexpressed in PDLSCs via transfection and subjected to inflammatory stimulation to observe its effects on osteogenic differentiation and the expression of osteogenic-related genes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!