A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effect of hypergravity, hyperbaric pressure, and hypoxia on osteogenic differentiation of adipose stem cells. | LitMetric

The effect of hypergravity, hyperbaric pressure, and hypoxia on osteogenic differentiation of adipose stem cells.

Tissue Cell

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, Aachen 52074, Germany. Electronic address:

Published: October 2022

Human adipose stem cells (ASCs) hold great potential for regenerative medicine approaches, including osteogenic regeneration of bone defects, that fail to heal autonomously. Osteogenic differentiation of stem cells is dependent on the stimulation of biophysical factors. In the present study, the effects of hypergravity, hypoxia, and hyperbaric treatment were investigated on adipose stem cell (ASC) metabolic activity, quantified by PrestoBlue conversion, and cell numbers, evaluated by crystal violet staining. Osteogenic differentiation was assessed by alkaline phosphatase (ALP) activity and cresolphthalein staining of calcium deposition. Differentiation was performed for 12 days, which was accompanied by periodical stimulation. Increasing gravity forces up to 50x g did not affect ASC viability, but it enhanced osteogenic markers with a strongest effect between 20 and 30x g. Hyperbaric stimulation at 3 bar decreased ASC cell numbers but increased ALP activity and calcium deposition. Hypoxia at 8 % atmospheric oxygen did not affect ASC proliferation, while cell numbers were reduced at 3 % oxygen. Furthermore, hypoxic conditions produced opposing results on osteogenic markers, as ALP activity increased whereas cresolphthalein staining decreased upon stimulation. These data demonstrated that intermittent short duration of basal physical or chemical impulses interfere with the osteogenic differentiation of ASCs. Our findings could be of specific relevance in ASC based therapies for regenerative medicine and bone tissue engineering approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tice.2022.101886DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
16
adipose stem
12
stem cells
12
cell numbers
12
alp activity
12
regenerative medicine
8
cresolphthalein staining
8
calcium deposition
8
affect asc
8
osteogenic markers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!