Dissemination of antibiotic resistance genes from landfill leachate to groundwater.

J Hazard Mater

Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China. Electronic address:

Published: October 2022

Landfill leachate, a highly concentrated organic wastewater containing diverse microorganisms and various heavy metals, has become an important reservoir of antibiotic resistance genes (ARGs). In this study, a total of 203 unique ARGs and 10 mobile genetic elements (MGEs) were identified from collected landfill leachate and groundwater. The number and abundance (normalized and absolute) of antibiotic resistome in effluent of leachate treatment plants decreased significantly compared to influent. The abundance of ARGs in groundwater increased as the distance from the leachate basin decreased. Fast expectation-maximization microbial source tracking (FEAST) showed that up to 96 % of ARGs in groundwater (GW3) may originate from nearby leachate, suggesting that ARGs in leachate can penetrate and spread into the groundwater environment. A significant correlation between ARGs and bacterial communities was identified. Together with network analysis showing the 12 bacterial taxa co-occurring with seven classes of antibiotic-associated ARGs, our results revealed the diverse potential microbial hosts of ARGs in water samples around the landfill sites. Heavy metals, bacterial community and MGEs were the driving factors shaping the ARGs patterns in the water samples, with their interactions explaining 57 % of ARGs variations. Our results provide an understanding of the distribution and dissemination of ARGs from landfill leachate to the nearby groundwater and suggest a comprehensive impact assessment of ARGs in aquatic environments of landfills.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.129763DOI Listing

Publication Analysis

Top Keywords

landfill leachate
16
args
12
antibiotic resistance
8
resistance genes
8
leachate
8
leachate groundwater
8
heavy metals
8
args groundwater
8
water samples
8
groundwater
6

Similar Publications

Due to the industry's rapid growth, the presence of organic pollutants, especially antibiotics, in water and wastewater resources is the main concern for wildlife and human health. Therefore, these days, a significant challenge is developing an efficient, sustainable, and eco-friendly photocatalyst. Natural biological models have numerous advantages compared to artificial model materials.

View Article and Find Full Text PDF

Solid magnetic liposomes (ML, nanocomposites comprising lipid bilayers that incorporate magnetic nanoparticles) may be used in wastewater remediation: the lipid bilayer creates an environment where organic pollutants preferentially partition instead of water and the manipulation of ML with an external magnet enables an easy recovery from water. This study aimed to assess the system's potential for water remediation, focusing on ML ability to remove common pollutants in industrial wastewater. Specifically, alkylphenol ethoxylates (APEO) were used as the archetype for organic pollutants.

View Article and Find Full Text PDF

Efficient removal of direct dyes and heavy metal ion by sodium alginate-based hydrogel microspheres: Equilibrium isotherms, kinetics and regeneration performance study.

Int J Biol Macromol

January 2025

Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China; Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China. Electronic address:

Improving the adsorption capacity of materials for pollutants by means of modification is an important direction in the research of water treatment technology. To improve the applicability of sodium alginate composites in the field of adsorption, magnetic sodium alginate-based hydrogel microsphere adsorbent material FeO@SA/PEI-Fe (FSPF) was synthesized in a single step by using polyethyleneimine grafting modification of sodium alginate by sol-gel method. The material was used for the removal of direct blue GL (DB 200) and direct date red B (DR 13) from simulated wastewater, as well as Cu(II) and Pb(II) from simulated wastewater with heavy metal ions.

View Article and Find Full Text PDF

A comprehensive screening method of oxidation systems based on reaction rate constant (k value) and emergy (Em value).

Sci Total Environ

January 2025

School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, PR China. Electronic address:

Oxidation systems are diverse and widely used for the degradation of organic pollutants in water. Identifying suitable oxidation systems for certain organic pollutants is a common challenge in practical engineering. Simultaneous consideration of the oxidation selectivity and economy of different oxidation systems for organic pollutants can improve the accuracy of the screening process.

View Article and Find Full Text PDF

Adsorption properties and mechanisms of Cd by co-pyrolysis composite material derived from peanut biochar and tailing waste.

Environ Geochem Health

January 2025

College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.

Cadmium (Cd) contamination in aquatic systems is a widespread environmental issue. In this study, a solid waste iron tailings and biochar hybrid (Fe-TWBC) was successfully synthesized derived from co-pyrolysis of peanut shell and tailing waste (Fe-TW). Characterization analyses showed that the metal oxides from solid waste iron tailings successfully loaded onto the biochar surface, with more functional groups in Fe-TWBC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!