Background: Severe inflammation of the lungs results from acute lung injury (ALI), a common life-threatening lung disease with a high mortality rate. The ligand-activated transcription factor peroxisome proliferator-activated receptor (PPAR) γ plays essential roles in diverse biological processes including inflammation, metabolism, development, and immune response. Salvianolactone acid A (SA) is a terpenoid derived from the herb Salvia miltiorrhiza. However, there is a scarcity of experimental evidence indicating whether the effect of SA on ALI occurs via PPAR-γ.
Methods: SA (20 or 40 mg/kg, i.g., 1 time/day) was administered to mice for 3 d, followed by the induction of ALI by intranasal lipopolysaccharide (LPS, 10 mg/kg). The lung function and levels of inflammation, reactive oxygen species (ROS), immune cells, apoptosis, and PPAR-γ were examined. The antagonistic activity of GW9662 (GW, 1 µM, specific PPAR-γ blocker) and PPAR-γ transfection silencing against SA (10 μM) in BEAS-2B cells induced by LPS (10 μg/ml, 24 h) was also investigated to assess whether the observed effects caused by SA were mediated by PPAR-γ.
Results: The results showed that lung histopathological injury, the B-line, the fluorescence intensity of live small animal, and the biomarkers in BALF or lung in the treatment of SA could regulate significantly. In addition, SA obviously decreased the levels of ROS and apoptosis in the primary lung cells, and MDA, increased the levels of GSH-Px and SOD. SA reduced levels of macrophages and neutrophils. Furthermore, SA reduced the protein levels of Keap-1, Cleaved-caspase-3, Cleaved-caspase-9, p-p65/p65, NLRP3, IL-1β, and upregulated the levels of p-Nrf2/Nrf2, HO-1, Bcl-2/Bax, PPAR-γ, p-AMPK/AMPK in lung tissue. In addition, silencing and inhibition of PPAR-γ effectively decreased the protective effects of SA in BEAS-2B cells induced by LPS, which might indicate that the active molecules of SA regulate ALI via mediation by PPAR-γ, which exhibited that the effect of SA related to PPAR-γ.
Conclusions: The anti-ALI effects of SA were partially mediated through PPAR-γ signaling. These data provide the molecular justification for the usage of SA in treating ALI and can assist in increasing the comprehensive utilization rate of Salvia miltiorrhiza.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2022.154386 | DOI Listing |
Phytother Res
January 2025
Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, but effective therapeutic drugs are still lacking. Dihydrotanshinone I (DHTS), a natural product isolated from Salvia miltiorrhiza, has been shown to have ameliorative effects on NAFLD. The aim of this study was to investigate the hepatoprotective effect of DHTS on NAFLD and its mechanism.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
Beijing Key Laboratory of Plant Resources Research and Development, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
Hair loss is one of the skin conditions that can affect people's mental health. Plant raw material extracts are of great interest due to their safety. In this study, we utilize reverse network pharmacology to screen for key targets of the Wnt/β-catenin signaling pathway and the TGFβ/BMP signaling pathway, as well as key differential lipids, for plant raw materials selection.
View Article and Find Full Text PDFFront Pharmacol
January 2025
School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
Introduction: radix et rhizoma (Danshen) is a crucial medicinal material for treating cardiovascular and cerebrovascular diseases. However, the presence of adulterants and intraspecific variability poses challenges to its clinical safety.
Methods: This study collected samples of from various regions and commonly encountered adulterants.
Biofabrication
January 2025
College of Textiles & Clothing, Qingdao University, 308 Ningxia Road, Qingdao, Qingdao, Shandong, 266071, CHINA.
The design and development of advanced surgical sutures with appropriate structure and abundant bio-functions are urgently required for the chronic wound closure and treatment. In this study, an integrated technique routine combining modified electrospinning with hot stretching process was proposed and implemented to fabricate poly(L-lactic acid) (PLLA) nanofiber sutures, and the Salvia miltiorrhiza Bunge-Radix Puerariae herbal compound (SRHC) was encapsulated into PLLA nanofibers during the electrospinning process to enrich the biofunction of as-generated sutures. All the PLLA sutures loading without or with SRHC were found to exhibit bead-free and highly-aligned nanofiber structure.
View Article and Find Full Text PDFInt J Pharm
January 2025
School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515 China. Electronic address:
Atherosclerosis, a major cause of cardiovascular diseases, involves complex pathophysiological processes. The co-delivery of multiple bioactive components derived from phytomedicine to atherosclerotic plaque is challenging, especially for those with varied solubilities. This study introduces a novel metal-phenolic network-based core-shell recombinant high-density lipoprotein nanocarrier (SSPH-MPN@rHDL) for co-delivering multiple bioactive components from Salvia miltiorrhiza and Carthamus tinctorius, including salvianic acid A (SAA), salvianolic acid B (SAB), protocatechuic aldehyde (PCA), hydroxysafflor yellow A (HSYA), and tanshinone IIA (TS-IIA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!