Gastrointestinal nematodes (GIN) are amongst the most important pathogens of grazing ruminants worldwide, resulting in negative impacts on cattle health and production. The dynamics of infection are driven in large part by the influence of climate and weather on free-living stages on pasture, and computer models have been developed to predict infective larval abundance and guide management strategies. Significant uncertainties around key model parameters limits effective application of these models to GIN in cattle, however, and these parameters are difficult to estimate in natural populations of mixed GIN species. In this paper, recent advances in molecular biology, specifically ITS-2 rDNA 'nemabiome' metabarcoding, are synthesised with a modern population dynamic model, GLOWORM-FL, to overcome this limitation. Experiments under controlled conditions were used to estimate rainfall constraints on migration of infective L3 larvae out of faeces, and their survival in faeces and soil across a temperature gradient, with nemabiome metabarcoding data permitting species-specific estimates for Ostertagia ostertagi and Cooperia oncophora in mixed natural populations. Results showed that L3 of both species survived well in faeces and soil between 0 and 30 °C, and required at least 5 mm of rainfall daily to migrate out of faeces, with the proportion migrating increasing with the amount of rainfall. These estimates were applied within the model using weather and grazing data and use to predict patterns of larval availability on pasture on three commercial beef farms in western Canada. The model performed well overall in predicting the observed seasonal patterns but some discrepancies were evident which should guide further iterative improvements in model development and field methods. The model was also applied to illustrate its use in exploring differences in predicted seasonal transmission patterns in different regions. Such predictive modelling can help inform evidence-based parasite control strategies which are increasingly needed due climate change and drug resistance. The work presented here also illustrates the added value of combining molecular biology and population dynamics to advance predictive understanding of parasite infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetpar.2022.109777DOI Listing

Publication Analysis

Top Keywords

population dynamics
8
gastrointestinal nematodes
8
ostertagia ostertagi
8
ostertagi cooperia
8
cooperia oncophora
8
natural populations
8
molecular biology
8
faeces soil
8
model
6
improved model
4

Similar Publications

Background: The endangered Kashmir musk deer (Moschus cupreus), native to high-altitude Himalayas, is an ecological significant and endangered ungulate, threatened by habitat loss and poaching for musk pod distributed in western Himalayan ranges of India, Nepal and Afghanistan. Despite its critical conservation status and ecological importance in regulating vegetation dynamics, knowledge gaps persist regarding its population structure and genetic diversity, hindering effective management strategies.

Methods And Results: We aimed to understand the population genetics of Kashmir musk deer in north-western Himalayas using two mitochondrial DNA (mtDNA) regions and 11 microsatellite loci.

View Article and Find Full Text PDF

The abnormally viscous and thick mucus is a hallmark of cystic fibrosis (CF). How the mutated CF gene causes abnormal mucus remains an unanswered question of paramount interest. Mucus is produced by the hydration of gel-forming mucin macromolecules that are stored in intracellular granules prior to release.

View Article and Find Full Text PDF

The success of pollen-pistil interaction in Mauritia flexuosa (buriti), a palm adapted to the humid ecosystems, 'veredas', within the Cerrado, is influenced by intrinsic and environmental factors. Its supra-annual flowering, dioecy, and adverse climate conditions pose challenges for fertilization, therefore information on floral biology is essential. This study aimed to ascertain stigma receptivity, and elucidate structural, cytochemical, and ultrastructural aspects of the pollen-pistil relationship.

View Article and Find Full Text PDF

Our aim was to determine the effects of P intake on P balance, serum parathyroid hormone (PTH) levels and bone resorption during the final 4 weeks prepartum and the first 8 weeks of lactation. Sixty pregnant multiparous Holstein Friesian dairy cows were assigned to a randomized block design with repeated measurements and dietary treatments arranged according to a 2 × 2 factorial design. The experimental diets contained 3.

View Article and Find Full Text PDF

Oxytocin and Neuroscience of Lactation: Insights from the Molecular Genetic Approach.

Neurosci Res

January 2025

RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan. Electronic address:

In mammals, lactation is essential for the health and growth of infants and supports the formation of the mother-infant bond. Breastfeeding is mediated by the neurohormone oxytocin (OT), which is released into the bloodstream in a pulsatile manner from OT neurons in the hypothalamus to promote milk ejection into mammary ducts. While classical studies using anesthetized rats have illuminated the activity patterns of putative OT neurons during breastfeeding, the molecular, cellular, and neural circuit mechanisms driving the synchronous pulsatile bursts of OT neurons in response to nipple stimulation remain largely elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!