A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Atmospheric wet deposition serves as an important nutrient supply for coastal ecosystems and fishery resources: Insights from a mariculture area in North China. | LitMetric

Atmospheric wet deposition serves as an important nutrient supply for coastal ecosystems and fishery resources: Insights from a mariculture area in North China.

Mar Pollut Bull

CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China.

Published: September 2022

To determine the ecological effects of atmospheric wet deposition of dissolved nutrients on the coastal waters around the Yangma Island, rain and snow samples were collected and analyzed at a shore-based site for one year. The wet deposition fluxes of dissolved inorganic nitrogen and phosphorus (DIN and DIP) and dissolved organic nitrogen and phosphorus were 69.2, 0.136, 13.3 and 0.143 mmol m a, respectively. In summer, the new production fueled by wet deposition accounted for 19.3 % of that in seawater and 16.4 % of the amount of particulate organic carbon ingested by the scallops cultivated in the study area, indicating the potential contribution of wet deposition to fishery resources. Meanwhile, precipitation increased the seasonal average DIN/DIP ratios in surface seawater by 17.7 %, 16.3 %, 23.4 % and 6.5 % in spring, summer, autumn and winter, respectively, which could change the composition of ecological community and cause obvious negative impact on the ecosystem and mariculture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2022.114036DOI Listing

Publication Analysis

Top Keywords

wet deposition
20
atmospheric wet
8
fishery resources
8
nitrogen phosphorus
8
deposition
5
deposition serves
4
serves nutrient
4
nutrient supply
4
supply coastal
4
coastal ecosystems
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!